Bayesian shape from shading

阴影的贝叶斯形状

基本信息

  • 批准号:
    6808713
  • 负责人:
  • 金额:
    $ 7.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-08-01 至 2006-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The long-term goal of this research is to understand the visual mechanisms that enable human observers to perceive the shapes of objects. These mechanisms are central to normal visual functioning, and understanding them would help to illuminate principles and limitations of normal vision, as well as the deficiencies that cause visual deficits, especially visual agnosias. The specific aim of these experiments is to investigate human observers' abilities to perceive the shapes of objects from the shading information in retinal images. This shading information is extremely ambiguous, because any given 2D image could have been generated by any of an infinite number of 3D arrangements of lighting sources and surfaces. Nevertheless, human observers rapidly arrive at a generally accurate interpretation of such images, which implies that the human visual system must incorporate accurate assumptions (at least implicitly) about which 3D scenes are more or less likely to occur in the real world. The hypothesis being tested here is that the visual system uses a statistical model of natural illumination and a statistical model of local surface shape and reflectance, in order to arrive at the most likely 3D interpretation of a 2D image. This research project has four components. (1) Using a multidirectional photometer, we will measure the illumination incident from all directions at many randomly selected locations, and use these measurements to construct a statistical model of natural illumination. (2) Using 3D digitizing scanners, we will digitize the shape and reflectance patterns of many natural objects, and use small surface patches extracted from this data to construct a statistical model of local surface shape and reflectance. (3) We will develop a Bayesian model observer that uses the measured illumination and surface statistics to infer the most likely 3D shape of objects depicted in 2D images. (4) We will compare the performance of human observers and the Bayesian model observer on a number of shape perception tasks. If the human and Bayesian observers find the same tasks easy or difficult, then we will conclude that human performance is limited by the same factor as the Bayesian observers performance, namely the extent to which the illumination and surface statistics in the various tasks match the statistics measured in the natural world. Otherwise, human observers must use constraints other than the measured natural statistics to arrive at accurate 3D interpretations of 2D images.
描述(由申请人提供):本研究的长期目标是了解使人类观察者能够感知物体形状的视觉机制。这些机制是正常视觉功能的核心,了解它们将有助于阐明正常视觉的原理和局限性,以及导致视觉缺陷,特别是视觉失认症的缺陷。这些实验的具体目的是研究人类观察者从视网膜图像中的阴影信息感知物体形状的能力。这种阴影信息是非常模糊的,因为任何给定的2D图像都可能是由光源和表面的无限数量的3D布置中的任何一个产生的。然而,人类观察者迅速地达到对这样的图像的大致准确的解释,这意味着人类视觉系统必须结合关于哪些3D场景或多或少可能出现在真实的世界中的准确假设(至少隐含地)。这里测试的假设是,视觉系统使用自然照明的统计模型和局部表面形状和反射率的统计模型,以达到最有可能的2D图像的3D解释。该研究项目有四个组成部分。(1)使用多方向光度计,我们将测量从各个方向入射的照明在许多随机选择的位置,并使用这些测量来构建自然照明的统计模型。(2)使用3D数字化扫描仪,我们将模拟许多自然物体的形状和反射模式,并使用从这些数据中提取的小表面块来构建局部表面形状和反射率的统计模型。(3)我们将开发一个贝叶斯模型观察器,它使用测量的照明和表面统计来推断2D图像中描绘的对象的最可能的3D形状。(4)我们将比较人类观察员和贝叶斯模型观察员在一些形状感知任务上的表现。如果人类和贝叶斯观察者发现相同的任务容易或困难,那么我们将得出结论,人类的表现受到与贝叶斯观察者表现相同的因素的限制,即各种任务中的照明和表面统计与自然世界中测量的统计相匹配的程度。否则,人类观察者必须使用测量的自然统计以外的约束来达到2D图像的准确3D解释。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

RICHARD F MURRAY其他文献

RICHARD F MURRAY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('RICHARD F MURRAY', 18)}}的其他基金

NEURAL FATE DETERMINATION IN THE MOUSE DORSAL ROOT GANGLION
小鼠背根神经节的神经命运决定
  • 批准号:
    8359804
  • 财政年份:
    2011
  • 资助金额:
    $ 7.93万
  • 项目类别:
MOLECULAR REGULATION OF NOCICEPTIVE NEURON DEVELOPMENT
伤害性神经元发育的分子调控
  • 批准号:
    8168093
  • 财政年份:
    2010
  • 资助金额:
    $ 7.93万
  • 项目类别:
MOLECULAR REGULATION OF NOCICEPTIVE NEURON DEVELOPMENT
伤害性神经元发育的分子调控
  • 批准号:
    7959430
  • 财政年份:
    2009
  • 资助金额:
    $ 7.93万
  • 项目类别:
MOLECULAR REGULATION OF NOCICEPTIVE NEURON DEVELOPMENT
伤害性神经元发育的分子调控
  • 批准号:
    7725062
  • 财政年份:
    2008
  • 资助金额:
    $ 7.93万
  • 项目类别:
MOLECULAR REGULATION OF NOCICEPTIVE NEURON DEVELOPMENT
伤害性神经元发育的分子调控
  • 批准号:
    7610007
  • 财政年份:
    2007
  • 资助金额:
    $ 7.93万
  • 项目类别:
MOLECULAR REGULATION OF NOCICEPTIVE NEURON DEVELOPMENT
伤害性神经元发育的分子调控
  • 批准号:
    7381389
  • 财政年份:
    2006
  • 资助金额:
    $ 7.93万
  • 项目类别:
THE ROLE OF BONE MORPHOGENETIC PROTEINS IN NOCICEPTIVE NEURON DEVELOPMENT
骨形态发生蛋白在伤害性神经元发育中的作用
  • 批准号:
    7170610
  • 财政年份:
    2005
  • 资助金额:
    $ 7.93万
  • 项目类别:
Bayesian shape from shading
阴影的贝叶斯形状
  • 批准号:
    6929226
  • 财政年份:
    2004
  • 资助金额:
    $ 7.93万
  • 项目类别:
BONE MORPHOGENETIC PROTEINS IN NOCICEPTIVE NEURON DEVELO
伤害性神经元发育中的骨形态发生蛋白
  • 批准号:
    6981576
  • 财政年份:
    2003
  • 资助金额:
    $ 7.93万
  • 项目类别:

相似海外基金

Breast core-needle diagnostics in LMICs via millifluidics and direct-to-digital imaging: development and validation in Ghana
通过微流体和直接数字成像对中低收入国家进行乳腺空心针诊断:在加纳进行开发和验证
  • 批准号:
    10416550
  • 财政年份:
    2023
  • 资助金额:
    $ 7.93万
  • 项目类别:
Leveraging Label-Free Digital Imaging to Enable Rapid On-Site Evaluation (ROSE) During Thyroid Biopsy Procedures
利用无标记数字成像在甲状腺活检过程中实现快速现场评估 (ROSE)
  • 批准号:
    10756316
  • 财政年份:
    2023
  • 资助金额:
    $ 7.93万
  • 项目类别:
Computational Colour Approach to Digital Imaging, Human Perception, Computer Vision and AR/VR/MR
数字成像、人类感知、计算机视觉和 AR/VR/MR 的计算色彩方法
  • 批准号:
    RGPIN-2019-04255
  • 财政年份:
    2022
  • 资助金额:
    $ 7.93万
  • 项目类别:
    Discovery Grants Program - Individual
Sensitive detection of protein-protein and nucleic acid-protein interactions using a digital imaging system
使用数字成像系统灵敏检测蛋白质-蛋白质和核酸-蛋白质相互作用
  • 批准号:
    RTI-2022-00427
  • 财政年份:
    2021
  • 资助金额:
    $ 7.93万
  • 项目类别:
    Research Tools and Instruments
Computational Colour Approach to Digital Imaging, Human Perception, Computer Vision and AR/VR/MR
数字成像、人类感知、计算机视觉和 AR/VR/MR 的计算色彩方法
  • 批准号:
    RGPIN-2019-04255
  • 财政年份:
    2021
  • 资助金额:
    $ 7.93万
  • 项目类别:
    Discovery Grants Program - Individual
SBIR Phase I: Digital Imaging Radar for Autonomy Infrastructure
SBIR 第一阶段:用于自主基础设施的数字成像雷达
  • 批准号:
    2036315
  • 财政年份:
    2021
  • 资助金额:
    $ 7.93万
  • 项目类别:
    Standard Grant
Automated Digital Imaging for Cervical Cancer Screening
用于宫颈癌筛查的自动数字成像
  • 批准号:
    10414907
  • 财政年份:
    2020
  • 资助金额:
    $ 7.93万
  • 项目类别:
Automated Digital Imaging for Cervical Cancer Screening
用于宫颈癌筛查的自动数字成像
  • 批准号:
    10082877
  • 财政年份:
    2020
  • 资助金额:
    $ 7.93万
  • 项目类别:
Concepts Have Teeth, And Teeth That Bite Through Time: digital imaging and Blackfoot material culture in UK museums.
概念有牙齿,牙齿会咬住时间:英国博物馆中的数字成像和黑脚物质文化。
  • 批准号:
    AH/V001876/1
  • 财政年份:
    2020
  • 资助金额:
    $ 7.93万
  • 项目类别:
    Research Grant
Automated Digital Imaging for Cervical Cancer Screening
用于宫颈癌筛查的自动数字成像
  • 批准号:
    10634569
  • 财政年份:
    2020
  • 资助金额:
    $ 7.93万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了