Medical Knowledge Graphs: Artificial Intelligence for Cancer Pathways

医学知识图:癌症通路的人工智能

基本信息

  • 批准号:
    2432658
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Routinely-collected healthcare data provides a rich source of information on the real-life workings of healthcare systems, and retrospective analyses of this data can provide real insights. However, such analysis is often difficult, as the data needed to generate useful knowledge is frequently stored heterogeneously and requires significant amounts of time to curate and integrate.Knowledge Graphs (KGs), graph-structured knowledge bases that link entities using semantic relationships, are being increasingly used in the health data literature to overcome these difficulties and construct large-scale knowledge bases from a variety of sources. The idea of KGs was initially popularised by Google through the Google Knowledge Graph, introduced in 2012, and many KGs have since been adopted in academia and industry. Today, hardly any larger company is not using a KG in some way, and artificial intelligence research around KGs is receiving increased attention.In terms of their impact, KGs are appealing in our setting for several reasons. Graph databases often rely on less rigid schemas than traditional databases, facilitating the integration of heterogeneous data. Additionally, the graph-based structure of the data is often an intuitive method for representing complex contextual information, such as a sequence of clinical events, or interactions between comorbidities. KGs allow the rich domain knowledge present in a setting to be represented and reasoned over. Despite these advantages, relatively little research so far has addressed their potential applications for modelling and greater understanding of patient pathways.There are a number of key challenges in this area, in particular the fact that pathways are often defined at high level in terms of broad recommendations, so formalising them into a machine readable form is a potential issue. The process of preparing and interpreting these pathways is also currently human-intensive, and likely to be inaccurate without clinician input.Importantly, the existing state-of-the-art solutions on pathway modelling:lose relevant structural information on the links between elements of a pathway, often choosing to model a pathway as text, images, or another data representation can be difficult to explain and audit, both to the patient or clinician, which is key to building public trust in such systems do not consider multi-granular representations of pathways, which affects transparency since pre-processing steps that translate different levels of granularity are often invisible to downstream analyses rely on raw data without incorporating incorporate domain knowledge, making it harder for reasoning methods to take advantage of the rich contextual information often available. This work attempts to take the first step in overcoming some of these challenges. We build a novel Knowledge Graph on pathways in a way that:preserves structural information between its elements provides a multi-granular representation that is explainable and auditable, thus allowing clinicians to build trust into such a system takes the first step towards more advanced AI reasoning methods that include both data-based AI methods as well as knowledge-based AI methods allows to include all contextual information available, including raw data, expert domain knowledge, thus making decision based on more complete information. This project falls within the EPSRC Artificial Intelligence and Robotics, Healthcare Technologies, as well as Information and Communication Technology research area.This project is in collaboration with Elsevier.
自动收集的医疗保健数据提供了关于医疗保健系统的真实工作的丰富信息源,并且对该数据的回顾性分析可以提供真实的见解。然而,这样的分析往往是困难的,因为所需的数据,以产生有用的知识往往是异构存储,并需要大量的时间来策展和integrated.Knowledge Graphs(KG),图形结构的知识库,使用语义关系的实体链接,正在越来越多地使用在健康数据文献,以克服这些困难,并从各种来源构建大规模的知识库。幼儿园的概念最初是由谷歌通过2012年推出的谷歌知识图谱推广的,此后许多幼儿园被学术界和工业界采用。如今,几乎没有一家大公司不以某种方式使用幼儿园,围绕幼儿园的人工智能研究也越来越受到关注。就其影响而言,幼儿园在我们的环境中很有吸引力,原因有几个。图数据库通常依赖于比传统数据库更不严格的模式,从而促进了异构数据的集成。此外,基于图形的数据结构通常是一种直观的方法,用于表示复杂的上下文信息,例如一系列临床事件或合并症之间的相互作用。KG允许在一个设置中呈现的丰富的领域知识被表示和推理。尽管有这些优点,相对较少的研究,迄今已解决其潜在的应用建模和更好地了解病人pathway.There是在这一领域的一些关键挑战,特别是事实上,路径往往是在高层次上定义的广泛的建议,因此,正式将它们转化为机器可读的形式是一个潜在的问题。准备和解释这些通路的过程目前也是人力密集型的,并且在没有临床医生输入的情况下可能是不准确的。重要的是,关于通路建模的现有最先进的解决方案:- 丢失关于通路的元素之间的链接的相关结构信息,通常选择将通路建模为文本、图像或另一数据表示可能难以向患者或临床医生解释和审核,这是在这样的系统中建立公众信任的关键,不考虑通路的多粒度表示,这影响了透明度,因为转换不同粒度级别的预处理步骤通常对下游分析不可见,下游分析依赖于原始数据而不结合领域知识,使得推理方法更难利用通常可用的丰富上下文信息。这项工作试图在克服其中一些挑战方面迈出第一步。我们在路径上构建了一个新的知识图,其方式是:保留其元素之间的结构信息,提供可解释和可审计的多粒度表示,从而使临床医生能够在这样的系统中建立信任,这是迈向更先进的AI推理方法的第一步,包括基于数据的AI方法以及基于知识的AI方法,允许包括所有可用的上下文信息,包括原始数据,专家领域知识,从而根据更完整的信息做出决策。该项目福尔斯属于EPSRC人工智能和机器人、医疗保健技术以及信息和通信技术研究领域。该项目与爱思唯尔合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

FAIRification of multiOmics data to link databases and create knowledge graphs for fermented foods
多组学数据的公平化以链接数据库并创建发酵食品的知识图
  • 批准号:
    EP/Y032748/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
III: Small: Revisiting Experimental Evaluation Protocols for Link Prediction in Knowledge Graphs
III:小:重新审视知识图中链接预测的实验评估协议
  • 批准号:
    2346959
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Proto-OKN Theme 1: DREAM-KG: Develop Dynamic, REsponsive, Adaptive, and Multifaceted Knowledge Graphs to address homelessness with Explainable AI
Proto-OKN 主题 1:DREAM-KG:开发动态、响应式、自适应和多方面的知识图,通过可解释的人工智能解决无家可归问题
  • 批准号:
    2333703
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
Research and development of an adverse outcome pathway-focused mechanistic inference tool for 'omics data using semantic knowledge graphs
使用语义知识图研究和开发针对“组学数据”的以不良结果途径为中心的机械推理工具
  • 批准号:
    10761637
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Story Video Generation Based on Content Planning Using Knowledge Graphs
基于知识图谱内容规划的故事视频生成
  • 批准号:
    23H03449
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Automatic response generation with reasoning, personalized knowledge graphs and emotional intelligence.
通过推理、个性化知识图和情商自动生成响应。
  • 批准号:
    RGPIN-2020-04440
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Enriching Exhibition Scholarship: Reconciling Knowledge Graphs and Social Media from Newspaper Articles to Twitter
丰富展览奖学金:协调从报纸文章到 Twitter 的知识图谱和社交媒体
  • 批准号:
    AH/W00559X/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Knowledge Graphs for Autonomous Formulation
自主配方知识图
  • 批准号:
    2748613
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Representing Transcription Factor Information in Knowledge Graphs
在知识图中表示转录因子信息
  • 批准号:
    574528-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
A study on technologies for utilizing multi-granular distributed knowledge graphs
多粒度分布式知识图利用技术研究
  • 批准号:
    22H03694
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了