Research and development of an adverse outcome pathway-focused mechanistic inference tool for 'omics data using semantic knowledge graphs

使用语义知识图研究和开发针对“组学数据”的以不良结果途径为中心的机械推理工具

基本信息

  • 批准号:
    10761637
  • 负责人:
  • 金额:
    $ 24.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary 1 Adverse outcome pathways (AOPs) are risk assessment tools that provide a transparent, mechanistic description of a 2 stressor resulting in an adverse outcome. Each AOP describes a logical sequence of measurable, causally linked events at 3 varying levels of a biological hierarchy (e.g., molecular, cell, organ, and population). Starting with exposure to a stressor, 4 and proceeding through a series of key events, each AOP terminates with an adverse outcome for the health of an 5 organism or population as a whole. Despite the great popularity of AOPs in risk assessment, there are few tools that can 6 exploit the rich mechanistic information they provide, especially quantitatively and in an automated setting. The lack of a 7 systematic framework for representing AOPs in a way that is amenable to quantitative analysis is an important obstacle 8 that limits their regulatory applications. We have developed a unique system, TOXGRAPH, to address the aforementioned 9 limitations. TOXGRAPH integrates biological and biochemical knowledge across a heterogeneous collection of open 10 biomedical ontologies and public databases: a massive, tissue-specific semantic knowledge graph (KG) curated entirely in- 11 house. We have also developed a deep learning-based model that maps unstructured textual AOP descriptions to specific 12 concepts in this KG. To take advantage of these semantic AOP representations, we have developed a framework that 13 allows us to turn AOPs into hypothesis validation tools, by generating enrichment statistics of AOPs an their individual 14 events. This approach can significantly simplify downstream analysis by calculating enrichment statistics at varying levels 15 of granularity, using the results of experimental datasets, such as the results of differential gene expression experiments 16 to quantify AOP enrichment. 17 The research we propose encompasses three specific aims: (1) improve our AOP enrichment statistics; (2) enhance our 18 NLP mapping of AOP event descriptions to biomedical knowledge graph concepts; (3) software engineering for improved 19 user experience with interactive visualizations. In the first aim, we will improve our model to account for multiple 20 experimental doses and time points concurrently for the enrichment of AOP events. In our second aim, we will improve 21 our semantic similarity model to map arbitrary AOP event descriptions to a controlled vocabulary. For this research, we 22 will employ state-of-the-art machine learning, NLP and text mining methodologies. In our third aim, we will develop a 23 web interface to the current command line tool which besides producing the same enrichment results and mechanistic 24 hypotheses will allow users to navigate the results in a lightweight, interactive 3D space. We envision this as a powerful 25 exploratory tool to generate mechanistic hypotheses, with the added ability to show enriched relations across time 26 points in this 3D space. 27 Our overarching goal is to provide an easy, intuitive, and unbiased (data-driven) framework for querying AOPs and 28 researching mechanism of action. TOXGRAPH will directly contribute towards the development of novel non-animal 29 testing strategies and streamline regulatory decision making. Fundamentally, it will greatly facilitate the intended use of 30 AOPs for regulatory applications: to help minimize the uncertainty in decision making.
项目摘要 1不良后果途径(AOP)是风险评估工具,提供了一个透明的,机械的描述, 2压力源导致不良结果。每个AOP都描述了一系列可测量的、因果关联的事件, 3个不同层次的生物等级(例如,分子、细胞、器官和群体)。从暴露于压力源开始, 4并通过一系列关键事件进行,每个AOP都以一个对 5、整体或整体的生物体。尽管AOP在风险评估中非常流行,但很少有工具可以 6利用它们提供的丰富的机械信息,特别是定量和自动设置。缺乏一个 7以一种易于定量分析的方式表示AOP的系统框架是一个重要的障碍 8、限制其应用范围。我们开发了一个独特的系统TOXGRAPH,以解决上述问题 9限制。TOXGRAPH将生物学和生物化学知识集成在一个开放的异构集合中, 10个生物医学本体和公共数据库:一个庞大的,组织特定的语义知识图(KG),完全在- 11房子我们还开发了一个基于深度学习的模型,该模型将非结构化的文本AOP描述映射到特定的 12个概念在这个KG。为了利用这些语义AOP表示,我们开发了一个框架, 13允许我们通过生成AOP及其个体的富集统计,将AOP转化为假设验证工具。 14个事件。这种方法可以通过计算不同水平的富集统计来显著简化下游分析 15的粒度,使用实验数据集的结果,例如差异基因表达实验的结果 16量化AOP富集。 17我们提出的研究包括三个具体目标:(1)改进我们的AOP富集统计;(2)增强我们的 18 AOP事件描述到生物医学知识图概念的NLP映射;(3)改进的软件工程 19交互式可视化的用户体验。在第一个目标中,我们将改进我们的模型,以考虑多个 20个实验剂量和时间点同时用于AOP事件的富集。在我们的第二个目标中,我们将改进 我们的语义相似性模型将任意AOP事件描述映射到受控词汇表。为了这项研究,我们 22将采用最先进的机器学习,NLP和文本挖掘方法。在我们的第三个目标中,我们将开发一个 23 web界面到当前的命令行工具,除了产生相同的丰富结果和机械 24个假设将允许用户在轻量级的交互式3D空间中导航结果。我们把它想象成一个强大的 25个探索性工具,用于生成机械假设,并具有显示随时间变化的丰富关系的附加功能 在这个3D空间中有26个点。 27我们的首要目标是提供一个简单、直观且无偏见(数据驱动)的框架来查询AOP, 28篇研究机制TOXGRAPH将直接促进新型非动物 29测试策略和简化监管决策。从根本上说,它将大大促进预期的使用, 30个用于监管应用的AOP:帮助最大限度地减少决策过程中的不确定性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ruchir Shah其他文献

Ruchir Shah的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了