Statistical and Computational Studies of Microarray Data
微阵列数据的统计和计算研究
基本信息
- 批准号:6748926
- 负责人:
- 金额:$ 14.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-06-01 至 2008-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): Microarrays have emerged as a new tool in biological and clinical research, giving a global view of a biological process in an unprecedented scale by simultaneous measurements of expression levels for thousands of genes. However, while their use is becoming widespread, many important issues remain unresolved and their potential for revealing important insights has not been fully realized. The initial part of this work will be on a more accurate estimation of microarray expression values. For example, performance of different probes on oligonucleotide arrays appears to vary widely depending on the melting temperature of the probe sequence, and this will be incorporated in a new algorithm. The main part of the work will be on developing new techniques for the discovery and understanding of complex interactions among genes as well as between genes and phenotypes. Moving beyond pairwise linear correlations, nonlinear and higher-order interactions among multiple genes will be explored with novel metrics. Density estimation techniques from multivariate statistics and other sophisticated computational tools will be employed to sift through billions of possible combinatorial arrangements. Those combinations found to be significant will be examined in depth and biologically validated when possible. Finally, a statistical framework will be developed in the generalized linear model setting in order to understand the relationship between genotypic and phenotypic data. To handle the large number of highly collinear genes in expression data, new computational techniques based on partial least squares will be developed. Preliminary results in finding correlations between genes and censored patient survival times have been promising, and similar methods will be developed and applied to identify predictive genes in the context of various types of phenotypic data. The candidate has been trained in applied and computational mathematics, and he now aims to apply his skills to problems in bioinformatics and functional genomics. The proposed award will allow him to receive a thorough training in molecular biology and genomics at Harvard Medical School and Children's Hospital in Boston. Through this transitional period, the candidate would like to become an independent investigator, able to lead a multidisciplinary team in an integrated approach to studying complex biological systems.
描述(由申请人提供):微阵列已成为生物和临床研究中的一种新工具,通过同时测量数千个基因的表达水平,以前所未有的规模提供生物过程的全局视图。然而,虽然它们的使用越来越广泛,但许多重要问题仍未解决,它们揭示重要见解的潜力尚未得到充分实现。这项工作的最初部分将是更准确地估计微阵列表达值。例如,寡核苷酸阵列上不同探针的性能似乎根据探针序列的解链温度而有很大差异,这将被纳入新算法中。这项工作的主要部分将是开发新技术来发现和理解基因之间以及基因与表型之间的复杂相互作用。超越成对线性相关性,多个基因之间的非线性和高阶相互作用将通过新的指标进行探索。来自多元统计的密度估计技术和其他复杂的计算工具将用于筛选数十亿种可能的组合排列。那些被发现具有重要意义的组合将被深入检查,并在可能的情况下进行生物学验证。最后,将在广义线性模型设置中开发统计框架,以了解基因型和表型数据之间的关系。为了处理表达数据中大量高度共线性的基因,将开发基于偏最小二乘的新计算技术。寻找基因与审查患者生存时间之间相关性的初步结果是有希望的,并且将开发和应用类似的方法来识别各种类型表型数据背景下的预测基因。 该候选人接受过应用和计算数学方面的培训,他现在的目标是将自己的技能应用于生物信息学和功能基因组学的问题。拟议的奖项将使他能够在哈佛医学院和波士顿儿童医院接受分子生物学和基因组学方面的全面培训。在这个过渡时期,候选人希望成为一名独立的研究者,能够领导一个多学科团队以综合方法研究复杂的生物系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter J Park其他文献
Identification of regions in the HOX cluster that can confer repression in a Polycomb-dependent manner
- DOI:
10.1186/1756-8935-6-s1-p86 - 发表时间:
2013-03-01 - 期刊:
- 影响因子:3.500
- 作者:
Caroline J Woo;Peter V Kharchenko;Laurence Daheron;Peter J Park;Robert E Kingston - 通讯作者:
Robert E Kingston
Peter J Park的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter J Park', 18)}}的其他基金
Data Analysis Center for Somatic Mosaicism Across Human Tissues Network
人体组织网络体细胞镶嵌数据分析中心
- 批准号:
10662721 - 财政年份:2023
- 资助金额:
$ 14.16万 - 项目类别:
Development of an Efficient High Throughput Technique for the Identification of High-Impact Non-Coding Somatic Variants Across Multiple Tissue Types
开发一种高效的高通量技术,用于鉴定跨多种组织类型的高影响力非编码体细胞变异
- 批准号:
10662860 - 财政年份:2023
- 资助金额:
$ 14.16万 - 项目类别:
Mutational signature analysis: methods and applications to the clinic
突变特征分析:方法和临床应用
- 批准号:
10418967 - 财政年份:2022
- 资助金额:
$ 14.16万 - 项目类别:
Mutational signature analysis: methods and applications to the clinic
突变特征分析:方法和临床应用
- 批准号:
10618248 - 财政年份:2022
- 资助金额:
$ 14.16万 - 项目类别:
Interoperability and Collaboration with the Common Fund Data Ecosystem to Improve Utility of 4DN Data
与共同基金数据生态系统的互操作性和协作,以提高 4DN 数据的实用性
- 批准号:
10683513 - 财政年份:2021
- 资助金额:
$ 14.16万 - 项目类别:
Interoperability and Collaboration with the Common Fund Data Ecosystem to Improve Utility of 4DN Data
与共同基金数据生态系统的互操作性和协作,以提高 4DN 数据的实用性
- 批准号:
10406676 - 财政年份:2021
- 资助金额:
$ 14.16万 - 项目类别:
Interoperability and Collaboration with the Common Fund Data Ecosystem to Improve Utility of 4DN Data
与共同基金数据生态系统的互操作性和协作,以提高 4DN 数据的实用性
- 批准号:
10907133 - 财政年份:2021
- 资助金额:
$ 14.16万 - 项目类别:
Identification of Transposable Element Insertions in the Kids First Data
Kids First 数据中转座元件插入的识别
- 批准号:
10172875 - 财政年份:2020
- 资助金额:
$ 14.16万 - 项目类别:
1/2-Somatic mosaicism and autism spectrum disorder
1/2-躯体镶嵌和自闭症谱系障碍
- 批准号:
9246015 - 财政年份:2016
- 资助金额:
$ 14.16万 - 项目类别:
Linking sequence and copy number variation to eye diseases by regulatory genomics
通过调控基因组学将序列和拷贝数变异与眼部疾病联系起来
- 批准号:
9044785 - 财政年份:2016
- 资助金额:
$ 14.16万 - 项目类别: