AFM Of Voltage And Mechanically Gated Channels
电压和机械门控通道的 AFM
基本信息
- 批准号:6721433
- 负责人:
- 金额:$ 32.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-04-01 至 2007-03-31
- 项目状态:已结题
- 来源:
- 关键词:atomic force microscopybiological signal transductionbiomechanicsbiophysicscalcium channelcell membranecysteineelectrophysiologyeukaryotelight microscopylipid bilayer membranemembrane transport proteinsmethod developmentnanotechnologypotassium channelsensory mechanismsite directed mutagenesisstimulus /responsetissue /cell cultureviscosityvoltage /patch clampvoltage gated channel
项目摘要
DESCRIPTION: The long-range goal of this work is to understand how cells
generate and transmit signals from mechanical and electrical inputs. More
specifically, this proposal examines the properties of ion channels using
simultaneous atomic force microscopy (AFM), patch clamp electrophysiology and
Ca2+ imaging. The proposal also deals with method developments in the above
areas and in nanofabrication to expand the capabilities of the combined
technique. The coupling of electrical and mechanical forces will be
characterized in cell membranes and in specific ion channels.
Mechanically gated channels. The activation of mechanosensitive ion channels is
brought about by changes in membrane tension. In eukaryotic cells, the forces
are distributed between the extracellular matrix, the bilayer, and the
cytoskeleton. These systems display time-dependent relaxations that obscure the
force that activates the channels. The atomic force microscope makes a fine
mechanical stimulator capable of producing known forces over known distances at
microscopic dimensions. When the AFM is combined with a patch-clamp, it is
possible to correlate the cell's mechanical and electrical properties. Time
dependent point scans will characterize stress relaxation rates, force-volume
images will be created using contrast derived from compliance, mechanical
transduction currents and changes in local Ca2+. To define physical properties
relevant for transduction, stimulation stress, strain and velocity are varied.
To establish the role of particular extracellular matrix elements, cantilevers
with specific ligands are used to pull in known directions on these elements
with the AFM. Experiments will test whether local deformation changes bilayer
tension or whether it behaves as a global fluid. Other experiments will measure
how global stress of osmotic swelling influences these properties. Cloned
mechanosensitive channels with reactive groups will be individually linked to
the cantilever and the channel gating measured as a function of local strain.
Voltage gated channels. The estimates of S4 movement are well within the
resolution of the AFM. The AFM cantilever will be connected to cloned, cysteine
mutant, K+ channels that with linkers bearing maleimide or other sulfhydryl
reagents. Using gating current protocols, experiments will measure the distance
that different sites in the channel can move. The movement will be correlated
with gating currents and channel opening. The equivalence between the
electrical forces and the mechanical forces will be measured by comparing the
distances moved as a function of voltage and mechanical force. The local
electrical field around S4 will be measured by the electrically generated force
as a function of the valence at known positions of S4.
描述:这项工作的长期目标是了解细胞是如何
从机械和电气输入产生和传输信号。更
具体地说,该建议使用
同步原子力显微镜(AFM),膜片钳电生理学和
Ca2+显像。该提案还涉及上述方法的发展
领域和纳米纤维,以扩大联合的能力,
法电力和机械力的耦合将是
其特征在于细胞膜和特定的离子通道。
机械门控通道。机械敏感性离子通道的激活是
是由膜张力的变化引起的。在真核细胞中,
分布在细胞外基质、双分子层和
细胞骨架这些系统显示时间依赖性弛豫,
激活通道的力量。原子力显微镜可以
能够在已知距离上产生已知力的机械刺激器,
微观尺度当AFM与膜片钳结合时,
可以将细胞的机械和电学特性联系起来。时间
相关点扫描将表征应力松弛速率、力-体积
将使用从顺应性、机械
转导电流和局部Ca2+的变化。定义物理属性
与转导相关的刺激应力、应变和速度是变化的。
为了确定特定细胞外基质成分的作用,
与特定的配体,用于拉在已知的方向上的这些元素
在AFM。实验将测试局部变形是否改变双层
张力或是否表现为全局流体。其他实验将测量
渗透膨胀的全局应力如何影响这些性质。克隆
具有反应基团的机械敏感通道将单独连接到
悬臂和沟道选通测量为局部应变的函数。
电压门控通道。S4运动的估计值完全在
AFM的分辨率。AFM悬臂将连接到克隆的半胱氨酸,
突变体,具有带有马来酰亚胺或其他巯基的接头的K+通道
试剂使用门控电流协议,实验将测量距离
不同的地点可以移动。运动将与
具有门控电流和沟道开口。的等价性
电力和机械力将通过比较
移动的距离是电压和机械力的函数。当地
S4周围的电场将通过电产生的力来测量
作为S4的已知位置处的化合价的函数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FREDERICK SACHS其他文献
FREDERICK SACHS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FREDERICK SACHS', 18)}}的其他基金
Cell mechanics and mechanical transduction by ion channels
细胞力学和离子通道的机械转导
- 批准号:
7741790 - 财政年份:2009
- 资助金额:
$ 32.8万 - 项目类别:
Cell mechanics and mechanical transduction by ion channels
细胞力学和离子通道的机械转导
- 批准号:
7914265 - 财政年份:2009
- 资助金额:
$ 32.8万 - 项目类别:
Cell mechanics and mechanical transduction by ion channels
细胞力学和离子通道的机械转导
- 批准号:
8289481 - 财政年份:2009
- 资助金额:
$ 32.8万 - 项目类别:
Cell mechanics and mechanical transduction by ion channels
细胞力学和离子通道的机械转导
- 批准号:
8133461 - 财政年份:2009
- 资助金额:
$ 32.8万 - 项目类别:
Development of a device to measure gap junction physiology
开发测量间隙连接生理学的装置
- 批准号:
7589345 - 财政年份:2008
- 资助金额:
$ 32.8万 - 项目类别:
相似海外基金
ROLE OF CELL ADHESION IN BIOLOGICAL SIGNAL TRANSDUCTION
细胞粘附在生物信号转导中的作用
- 批准号:
6238317 - 财政年份:1997
- 资助金额:
$ 32.8万 - 项目类别:
ROLE OF CELL ADHESION IN BIOLOGICAL SIGNAL TRANSDUCTION
细胞粘附在生物信号转导中的作用
- 批准号:
5210031 - 财政年份:
- 资助金额:
$ 32.8万 - 项目类别:














{{item.name}}会员




