Reinforcement Learning for optimal treatment strategies in healthcare applications
强化学习在医疗保健应用中实现最佳治疗策略
基本信息
- 批准号:2440893
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
An optimal stopping problem aims at finding an optimal policy that describes the right time at which to take a particular action in a stochastic process, to maximize an expected reward.Here the focus is placed on applications in the healthcare sector and predictive models characterized by sequential decision-making settings.The aim is to investigate the use of RL algorithms to learn optimal stopping policies suitable to describe a sequential decision-making setting, typical in a medical intervention study. The problem of interest regards a prognostic model attempting to reduce the risk of an adverse outcome of a group of patients given a set of covariates. Similar use can be found determining when to stop the treatment of patients receiving fractionated radiotherapy treatments, but also in response-guided problems of pharmacological treatments.The stopping problem is introduced by the role of interventions (actions) taken by the medical practitioner (agent) that create a causal link affecting the predictions (environment), to reduce the patient's risk. In real-world settings it is also observed that interventions driven by the score can change the distribution of the data and outcomes, leading to a decay in observed performance, particularly if the intervention is successful. As a result, this requires learning an optimal policy to address the stopping problem and dealing with the causal process governing the 'intervened' covariate and the outcome.The challenges and novelties by the problem regard strategies to incorporate stochastic intervention functions by means of Gaussian Processes as well as constrained policy optimization to take into account of real-world approximation of constraints (e.g. resource allocation in a hospital facility) referred to as costs of opening, running, and closing the activities.Further developments and novelties can be sought in extending the investigation to a multi agent framework to model the collaborative/competitive relationship behaviour among, for example, managing of resources across hospitals.Ajdari, A., Niyazi, M., Nicolay, N.H., Thieke, C., Jeraj, R. and Bortfeld, T., 2019. Towards optimal stopping in radiation therapy. Radiotherapy and Oncology, 134, pp.96-100.Kotas, J., 2019. Optimal stopping for response-guided dosing. Networks & Heterogeneous Media, 14(1), p.43.Lenert, M.C., Matheny, M.E. and Walsh, C.G., 2019. Prognostic models will be victims of their own success, unless.... Journal of the American Medical Informatics Association, 26(12), pp.1645-1650.Deliu, N., Williams, J.J. and Chakraborty, B., 2022. Reinforcement Learning in Modern Biostatistics: Constructing Optimal Adaptive Interventions. arXiv preprint arXiv:2203.02605.Wu, S.A., Wang, R.E., Evans, J.A., Tenenbaum, J.B., Parkes, D.C. and Kleiman-Weiner, M., 2021. Too Many Cooks: Bayesian Inference for Coordinating Multi-Agent Collaboration. Topics in Cognitive Science, 13(2), pp.414-432.Titsias, M.K., Schwarz, J., Matthews, A.G.D.G., Pascanu, R. and Teh, Y.W., 2019. Functional regularisation for continual learning with gaussian processes. arXiv preprint arXiv:1901.11356.
最优停止问题的目标是找到一个最优策略,该策略描述了在随机过程中采取特定行动的正确时间,以最大化预期收益。这里的重点放在医疗保健部门的应用和以顺序决策设置为特征的预测模型上。目的是研究RL算法的使用,以学习适合于描述在医疗干预研究中典型的顺序决策设置的最优停止策略。感兴趣的问题涉及一个预后模型,该模型试图降低给定一组协变量的一组患者的不良结局的风险。类似的用法可以用来确定何时停止对接受分次放射治疗的患者的治疗,但也可以用于药物治疗的反应导向问题。停止问题是由医生(代理人)所采取的干预(行动)的作用引入的,这些干预(行动)产生了影响预测(环境)的因果联系,以降低患者的风险。在现实世界中,也可以观察到,由分数驱动的干预会改变数据和结果的分布,导致观察到的绩效下降,特别是在干预成功的情况下。因此,这需要学习一个最优策略来解决停止问题,并处理控制被干预的协变量和结果的因果过程。该问题的挑战和新颖性涉及通过高斯过程合并随机干预功能的策略以及考虑约束(例如医院设施中的资源分配)的现实世界近似的策略优化,所述约束被称为活动的开始、运行和结束的成本。在将调查扩展到多代理框架以对例如跨医院的资源管理之间的协作/竞争关系行为进行建模的过程中可以寻求进一步的发展和新颖性。A.,Niyazi,M.,Nicolay,N.H.,Thieke,C.,Jeraj R.和Bortfeld,T.,2019.在放射治疗中走向最佳停止。《放射治疗与肿瘤学》,134,第96-100页。响应引导剂量的最佳停止。网络与异质媒体,14(1),第43页。Lenert,M.C.,Matheny,M.E.和Walsh,C.G.预测模型将成为自身成功的牺牲品,除非……《美国医学信息学协会杂志》,26(12),1645-1650页。现代生物统计学中的强化学习:构建最优适应性干预措施。Arxiv预印本arxiv:2203.02605.Wu,S.A.,Wang,R.E.,Evans,J.A.,Tenenbaum,J.B.,Parkes,D.C.和Kleiman-Weiner,M.,2021。厨师太多:协调多智能体协作的贝叶斯推理。《认知科学专题》,13(2),pp.414-432.Titsias,M.K.,Schwarz,J.,Matthews,A.G.D.G.,Pascanu,R.和Teh,Y.W.,2019。高斯过程连续学习的函数正则化。Arxiv预印本arxiv:1901.11356。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Optimal Quantum Control for Quantum Computers with Reinforcement Learning
通过强化学习实现量子计算机的最优量子控制
- 批准号:
575715-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Reinforcement learning approach to the optimal stopping problem
最优停止问题的强化学习方法
- 批准号:
RGPIN-2021-02760 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Expand QISE: Track 1: RLQSC: Reinforcement Learning for the Optimal Design of Programmable Quantum Sensor Circuit
展开 QISE:轨道 1:RLQSC:用于可编程量子传感器电路优化设计的强化学习
- 批准号:
2231377 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Optimal charging control of electrified public transportation based on deep reinforcement learning
基于深度强化学习的电动化公交最优充电控制
- 批准号:
580528-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alliance Grants
Seeking a better view: Guiding cameras for optimal imaging via reinforcement learning
寻求更好的视野:通过强化学习引导相机实现最佳成像
- 批准号:
2750751 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Reinforcement learning approach to the optimal stopping problem
最优停止问题的强化学习方法
- 批准号:
RGPIN-2021-02760 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
RI: Small: Towards Optimal and Adaptive Reinforcement Learning with Offline Data and Limited Adaptivity
RI:小型:利用离线数据和有限的适应性实现最优和自适应强化学习
- 批准号:
2007117 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Near-Optimal Scalable Algorithms for Multi-Agent Reinforcement Learning
多智能体强化学习的近乎最优可扩展算法
- 批准号:
2444539 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Studentship
Construction and verification of optimal operation and control method of Earth-To-Heat Exchanger using deep reinforcement learning
基于深度强化学习的地热交换器优化运行与控制方法的构建与验证
- 批准号:
19H02301 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Reinforcement learning for optimal inventory rationing
强化学习以实现最佳库存配给
- 批准号:
540362-2019 - 财政年份:2019
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




