Neural Network Prediction of Prostate Cancer Progression

前列腺癌进展的神经网络预测

基本信息

  • 批准号:
    6603799
  • 负责人:
  • 金额:
    $ 14.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-07-01 至 2005-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The broad, long-term objective of this application is to treat prostate cancer effectively through accurate diagnosis and accurate assessment of tumor progression. The hypothesis to be tested in this project is that artificial neural networks (ANNs) can accurately predict prostate cancer progression. The significance and health-relatedness of this research is that accurate prediction of prostate cancer progression is important to identify patients with organ-confined prostate cancer for whom surgery is highly effective, and patients with more advanced prostate cancer for whom surgery is less effective but imposes unnecessary risks of complications who are more appropriate to receive radiation, hormonal, and other therapies. Previous investigation of ANNs often rely on highly-selected ANNs that do not prove or disprove the effectiveness of ANNs. This application will determine, ultimately, whether ANN is more accurate than multivariate linear regression in the prediction of prostate cancer progression. Appropriate statistical models are important to combine clinically the results of an array of biomarkers and cancer predictors. The specific aims are: (1) To develop an ANN-based method for the prediction of pathologic stage and to compare with the Partin nomogram - a clinically accepted multivariate linear regression-based method. (2) To develop a novel method that will add 95% confidence intervals to the ANN prediction of prostate cancer progression. (3) To develop an ANN-based model for the prediction of pathologic stage based on preoperative serial PSA measurements. The research design is to develop ANN-based predictive models and compare them to a clinically accepted standard and previously published results that were considered promising but had produced limited clinical use. The methods to be used include collection of a clinical database, analysis of artificial neural network and multivariate linear regression models, receiver operating characteristic (ROC) analysis, statistical estimation, and computation of confidence intervals.
描述(由申请人提供):本申请的广泛、长期目标是通过准确诊断和准确评估肿瘤进展来有效治疗前列腺癌。在这个项目中要测试的假设是,人工神经网络(ANN)可以准确地预测前列腺癌的进展。这项研究的意义和健康相关性在于,准确预测前列腺癌进展对于识别手术非常有效的器官局限性前列腺癌患者以及手术效果较差但具有不必要并发症风险的更晚期前列腺癌患者非常重要,这些患者更适合接受放射,激素和其他治疗。以前的人工神经网络的研究往往依赖于高度选择的人工神经网络,不能证明或反驳人工神经网络的有效性。该应用程序将最终确定ANN在预测前列腺癌进展方面是否比多元线性回归更准确。适当的统计模型对于联合收割机临床上结合一系列生物标志物和癌症预测因子的结果是重要的。具体目标是: (1)建立一种基于人工神经网络的病理分期预测方法,并与临床上公认的基于多元线性回归的Partin诺模图进行比较。 (2)开发一种新的方法,将增加95%的置信区间的人工神经网络预测前列腺癌的进展。 (3)建立一个基于人工神经网络的模型,用于根据术前连续PSA测量值预测病理分期。 研究设计是开发基于人工神经网络的预测模型,并将其与临床公认的标准和先前发表的结果进行比较,这些结果被认为是有前途的,但临床应用有限。使用的方法包括临床数据库的收集、人工神经网络和多元线性回归模型的分析、受试者工作特征(ROC)分析、统计估计和置信区间的计算。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yulei Jiang其他文献

Yulei Jiang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yulei Jiang', 18)}}的其他基金

Developing a PET Volumetric Staging System for NSCLC: a Complement to TNM Staging
开发 NSCLC 的 PET 容积分期系统:TNM 分期的补充
  • 批准号:
    8758482
  • 财政年份:
    2014
  • 资助金额:
    $ 14.75万
  • 项目类别:
Developing a PET Volumetric Staging System for NSCLC: a Complement to TNM Staging
开发 NSCLC 的 PET 容积分期系统:TNM 分期的补充
  • 批准号:
    8930933
  • 财政年份:
    2014
  • 资助金额:
    $ 14.75万
  • 项目类别:
Computer-Aided Analysis of Histopathology Images of Prostate Cancer
前列腺癌组织病理学图像的计算机辅助分析
  • 批准号:
    7258106
  • 财政年份:
    2007
  • 资助金额:
    $ 14.75万
  • 项目类别:
Computer-Aided Analysis of Histopathology Images of Prostate Cancer
前列腺癌组织病理学图像的计算机辅助分析
  • 批准号:
    7446099
  • 财政年份:
    2007
  • 资助金额:
    $ 14.75万
  • 项目类别:
Computer-Aided Diagnosis of Breast Lesions in Mammograms
乳房 X 光检查中乳腺病变的计算机辅助诊断
  • 批准号:
    8082772
  • 财政年份:
    2002
  • 资助金额:
    $ 14.75万
  • 项目类别:
Computer-Aided Diagnosis of Breast Lesions in Mammograms
乳房 X 光检查中乳腺病变的计算机辅助诊断
  • 批准号:
    7842671
  • 财政年份:
    2002
  • 资助金额:
    $ 14.75万
  • 项目类别:
Computer-Aided Diagnosis of Breast Lesions in Mammograms
乳房 X 光检查中乳腺病变的计算机辅助诊断
  • 批准号:
    6477760
  • 财政年份:
    2002
  • 资助金额:
    $ 14.75万
  • 项目类别:
Computer-Aided Diagnosis of Breast Lesions in Mammograms
乳房 X 光检查中乳腺病变的计算机辅助诊断
  • 批准号:
    7027000
  • 财政年份:
    2002
  • 资助金额:
    $ 14.75万
  • 项目类别:
Computer-Aided Diagnosis of Breast Lesions in Mammograms
乳房 X 光检查中乳腺病变的计算机辅助诊断
  • 批准号:
    8507606
  • 财政年份:
    2002
  • 资助金额:
    $ 14.75万
  • 项目类别:
Computer-Aided Diagnosis of Breast Lesions in Mammograms
乳房 X 光检查中乳腺病变的计算机辅助诊断
  • 批准号:
    7580691
  • 财政年份:
    2002
  • 资助金额:
    $ 14.75万
  • 项目类别:

相似海外基金

FAIRClinical: FAIR-ification of Supplementary Data to Support Clinical Research
FAIRClinical:补充数据的 FAIR 化以支持临床研究
  • 批准号:
    EP/Y036395/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Research Grant
The IDeA State Consortium for a Clinical Research Resource Center: Increasing Clinical Trials in IDeA States through Communication of Opportunities, Effective Marketing, and WorkforceDevelopment
IDeA 州临床研究资源中心联盟:通过机会交流、有效营销和劳动力发展增加 IDeA 州的临床试验
  • 批准号:
    10715568
  • 财政年份:
    2023
  • 资助金额:
    $ 14.75万
  • 项目类别:
Optimizing integration of veterinary clinical research findings with human health systems to improve strategies for early detection and intervention
优化兽医临床研究结果与人类健康系统的整合,以改进早期检测和干预策略
  • 批准号:
    10764456
  • 财政年份:
    2023
  • 资助金额:
    $ 14.75万
  • 项目类别:
The Mayo Clinic NeuroNEXT Clinical Research Site
梅奥诊所 NeuroNEXT 临床研究网站
  • 批准号:
    10743328
  • 财政年份:
    2023
  • 资助金额:
    $ 14.75万
  • 项目类别:
Addressing Underperformance in Clinical Trial Enrollments: Development of a Clinical Trial Toolkit and Expansion of the Clinical Research Footprint
解决临床试验注册表现不佳的问题:开发临床试验工具包并扩大临床研究足迹
  • 批准号:
    10638813
  • 财政年份:
    2023
  • 资助金额:
    $ 14.75万
  • 项目类别:
The Minnesota TMD IMPACT Collaborative: Integrating Basic/Clinical Research Efforts and Training to Improve Clinical Care
明尼苏达州 TMD IMPACT 协作:整合基础/临床研究工作和培训以改善临床护理
  • 批准号:
    10828665
  • 财政年份:
    2023
  • 资助金额:
    $ 14.75万
  • 项目类别:
Improving Multicultural Engagement in Clinical Research through Partnership with Federally Qualified Health Centers and Community Health Worker Programs
通过与联邦合格的健康中心和社区卫生工作者计划合作,改善临床研究中的多元文化参与
  • 批准号:
    10823828
  • 财政年份:
    2023
  • 资助金额:
    $ 14.75万
  • 项目类别:
Promoting a Culture Of Innovation, Mentorship, Diversity and Opportunity in NCI Sponsored Clinical Research: NCI Research Specialist (Clinician Scientist) Award Application of Janice M. Mehnert, M.D.
在 NCI 资助的临床研究中促进创新、指导、多样性和机会文化:Janice M. Mehnert 医学博士的 NCI 研究专家(临床科学家)奖申请
  • 批准号:
    10721095
  • 财政年份:
    2023
  • 资助金额:
    $ 14.75万
  • 项目类别:
Clinical Research Center for REstoration of NEural-based Function in the Real World (RENEW)
现实世界神经功能恢复临床研究中心 (RENEW)
  • 批准号:
    10795328
  • 财政年份:
    2023
  • 资助金额:
    $ 14.75万
  • 项目类别:
Clinical Research and Academic Success in Obstetrics & Gynecology
产科临床研究和学术成就
  • 批准号:
    10828252
  • 财政年份:
    2023
  • 资助金额:
    $ 14.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了