Development of the next generation instrumented dissolution apparatus

下一代仪器化溶出度仪的开发

基本信息

  • 批准号:
    2441956
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

The majority of pharmaceutical products are designed to immediately release the active ingredient, where the microstructure and the disintegration process play a pivotal role in product performance. During granulation and tableting, interparticle bonds and pores are formed that define the tablet microstructure and impact performance. The pores in a tablet directly affect the rate at which a physiological fluid enters the tablet, leading to swelling of particles and the eventual break-up of the compact into agglomerates and primary particles.1 This leads to an increase in the specific surface area causing an increase in dissolution rate of the drug. These disintegration mechanisms, i.e. liquid imbibition, swelling and breakage of interparticle bonds, are strongly interconnected as the swelling of particles dynamically changes the internal pore structure which influences the liquid imbibition process and affects the interruption of particle-particle bonds. The development of a drug product requires a deep understanding of the interconnection of every step involved in tablet disintegration as well as their link to the microstructure, formulation and raw material attributes. There is currently a substantial knowledge gap due to the lack of appropriate in-situ measurement techniques that can resolve the fundamental processes underpinning disintegration and dissolution.This project aims to develop an innovative instrumented dissolution USP Apparatus 2 to resolve the fundamental mechanisms driving tablet dissolution. It will deliver transformative outcomes to reach the next level of understanding in tablet dissolution. The specific aims are:I. In-situ monitoring of tablet disintegration and dissolution: This project will produce the first dissolution tester that simultaneously measures the dynamic processes of liquid imbibition in and swelling of a tablet, size of disintegrated particles, the dissolved drug as a function of time. In addition, in-situ Raman spectroscopy will allow us to analyse if and when a solid-state transformation takes place during the dissolution testing. II. Gain next level of understanding of how formulation and tablet microstructure impacts tablet dissolution: The instrumented dissolution apparatus will be used to gain fundamental insights into the relationship between the formulation, microstructure and tablet dissolution. High-end off-line techniques (X-ray computed tomography and terahertz time-domain spectroscopy) will be used to quantify the tablet microstructure.The tablet disintegration and dissolution can only be optimised by having a deep understanding of the complex interactions of the dynamic swelling, liquid imbibition, break-up of interparticle bonds and dissolution processes. This can only be achieved by monitoring each of these processes separately and at the same time, where the major technological gap is in temporally and spatially resolving the fast (seconds to minutes) tablet swelling and liquid penetration kinetics. This gap will be addressed by developing the world's-first OCT-based dissolution testing platform. This novel experimental setup will be capable of simultaneously measuring the swelling and liquid penetration in 3D (two spatial and one temporal dimension) with a spatial resolution of 5-10 microns and a temporal resolution of milliseconds to seconds. This unique setup will be combined with established techniques, such as focused beam reflectance measurement (FBRM), an automated sampling for ultra-violet (UV) and Raman spectroscopy, to quantify every step involved in the combined disintegration-dissolution process.
大多数药品的设计目的是立即释放活性成分,其中微观结构和崩解过程对产品性能起着关键作用。在造粒和压片过程中,颗粒间键和孔隙的形成决定了片剂的微观结构和冲击性能。片剂中的孔隙直接影响生理液体进入片剂的速度,导致颗粒膨胀,最终将致密物分解成团块和初级颗粒这导致比表面积的增加,从而导致药物溶出率的增加。由于颗粒的膨胀动态地改变了内部孔隙结构,从而影响了液体的吸胀过程,影响了颗粒间键的中断,因此这些崩解机制(即液体吸胀、颗粒间键的膨胀和断裂)之间存在着紧密的联系。药品的开发需要深入了解片剂崩解过程中每个步骤的相互关系,以及它们与微观结构、配方和原料属性的联系。由于缺乏适当的原位测量技术,目前存在很大的知识差距,无法解决导致解体和溶解的基本过程。本项目旨在开发一种创新的仪器溶出度USP仪器2,以解决驱动片剂溶出的基本机制。它将带来变革性的结果,以达到对片剂溶出度的下一个理解水平。具体目标是:1。片剂崩解与溶出的现场监测:本项目将生产第一台同时测量片剂液体吸胀动态过程、崩解颗粒大小、溶解药物随时间变化的溶出度测试仪。此外,原位拉曼光谱将允许我们分析在溶解测试过程中是否以及何时发生固态转变。2。进一步了解制剂和片剂微观结构如何影响片剂溶出度:仪器溶出度仪将用于获得制剂、微观结构和片剂溶出度之间关系的基本见解。高端离线技术(x射线计算机断层扫描和太赫兹时域光谱)将用于量化片剂的微观结构。只有深入了解动态溶胀、液体吸胀、颗粒间键断裂和溶解过程的复杂相互作用,才能优化片剂的崩解和溶解过程。这只能通过同时单独监测这些过程来实现,其中主要的技术差距是在时间和空间上解决快速(秒到分钟)片剂膨胀和液体渗透动力学。这一差距将通过开发世界上第一个基于oct的溶出测试平台来解决。这种新颖的实验装置将能够同时测量三维(两个空间和一个时间维度)的膨胀和液体渗透,空间分辨率为5-10微米,时间分辨率为毫秒到秒。这种独特的装置将与现有的技术相结合,如聚焦光束反射测量(FBRM),紫外线(UV)和拉曼光谱的自动采样,以量化分解-溶解联合过程中涉及的每一步。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:

相似海外基金

GOALI: Development of Next Generation MXene-based Li-S Batteries with Practical Operating Temperatures
GOALI:开发具有实用工作温度的下一代 MXene 基锂硫电池
  • 批准号:
    2427203
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF Engines Development Award: Developing innovative solutions for next-generation factory-built housing (IN, MI)
NSF 发动机开发奖:为下一代工厂建造的住房开发创新解决方案(印第安纳州、密歇根州)
  • 批准号:
    2315483
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
Next Generation Water Cherenkov Detector Technology Development For The Study Of Supernova Neutrinos
用于超新星中微子研究的下一代水切伦科夫探测器技术开发
  • 批准号:
    MR/Y034082/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Strategies for next-generation flavivirus vaccine development
下一代黄病毒疫苗开发策略
  • 批准号:
    10751480
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
Development of next generation monitoring system for pediatric ventricular assist devices by artificial intelligence
利用人工智能开发下一代儿科心室辅助装置监测系统
  • 批准号:
    23K11892
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of aluminum stabilized HTS coils for next-generation magnets with high radiation resistance and high magnetic field
开发用于下一代高抗辐射和高磁场磁体的铝稳定高温超导线圈
  • 批准号:
    23H03665
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
University of Louisville Biomedical Integrative Opportunity for Mentored Experience Development -PREP (UL-BIOMED-PREP)
路易斯维尔大学生物医学综合指导经验开发机会 -PREP (UL-BIOMED-PREP)
  • 批准号:
    10557638
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of Natural Product-Inspired Ubiquinone Mimics as Next Generation Agrochemicals
开发受天然产物启发的泛醌模拟物作为下一代农用化学品
  • 批准号:
    2311665
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Equipment: MRI Consortium: Track 2 Development of a Next Generation Fast Neutron Detector
合作研究:设备:MRI 联盟:下一代快中子探测器的 Track 2 开发
  • 批准号:
    2320407
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Equipment: MRI Consortium: Track 2 Development of a Next Generation Fast Neutron Detector
合作研究:设备:MRI 联盟:下一代快中子探测器的 Track 2 开发
  • 批准号:
    2320405
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了