Analysing and recommending personalised care pathways for multimorbid patients with the use of artificial intelligence (AI) techniques

利用人工智能 (AI) 技术分析并推荐多病患者的个性化护理途径

基本信息

  • 批准号:
    2443005
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

BackgroundHealthcare systems are unable to cope with the complex need of managing multiple health conditions of multimorbid patients. Their conditions are treated individually by specialised healthcare professionals, without a coordination of goals and treatment plans, which often leads to duplications of care and iatrogenicity. Digital tools are being recognised as the foundation towards person-centered, proactive and integrated care, however most implementations have been studied in isolation with a lack of workflow optimisation.At the same time, there is a growing interest in the use of process mining (PM), a type of process analysis, in healthcare. This is because little is known about how care is being delivered, especially to patients with coexisting conditions whose care is often fragmented. In fact, there is a growing body of literature supporting the use of PM in improving patient outcomes and reducing cost and waiting times guidelines.In order to deal with the problem of care fragmentation and conflicting guidelines in multimorbidity researchers developed approaches to identify and address adverse interactions, such as constraint logic programming and analysis of computer interpretable clinical guidelines. These, however, can tell little about how care is being delivered and cannot identify new, emergent patterns of best practice. On the other hand, despite PM becoming a common approach to study existing care pathways, only 13% of papers propose a novel solution and, to the best of our knowledge, there has been no research published on PM in multimorbidity.AimsThe primary aim of the project is to contribute to the digitally supported, person centered and integrated model of care using data science and AI techniques to analyse and recommend personalised care pathways for multimorbid patients. A decision support tool will be used to disseminate the findings.The project is broken down into three main segments with increasingly broader area of focus: diabetes as single disease, diabetes and its related complications, such as renal disease, and finally diabetes accompanied by unrelated comorbidities, such as cancer.In each scope segment we aim to discover and analyse care pathways, which will provide insight into how care is delivered and into the conformance with published guidelines. Additionally, it will allow us to suggest novel care pathways with the focus on patient progression, disease outcome and care efficacy. The recommendations will be disseminated as a decision support tool that suggest care pathways based on current medical guidelines or, when these are not available due to conflicting targets of coexisting diseases, based on pathways with best outcomes.MethodologyDatasets will be explored in order to produce an overview of the population and the data. This would include time to event analysis as well as predictive modelling to estimate relevant clinical outcomes.Subsequently, healthcare processes will be discovered and analysed in terms of conformance with published guidelines and performance, by identification of bottlenecks, while the correctness of the model will be formally verified. AI tools will be used to cluster and classify patients, enabling the identification and analysis of pathway variants.In order to create recommendations for personalised care planning, we will use AI approaches to group patients to identify subpopulations with similar characteristics. Care pathways with best outcomes within each subset, as well as clinical guidelines, will be used to recommend novel care pathways, tailored to the individual, and these will then be formally verified.Finally, the findings will be disseminated as a decision support tool in the form of an interactive application. After inputting patient characteristics, it will present the user with a visual representation of predicted risk of adverse events in an intuitive format.
背景医疗保健系统无法应对管理多病患者多种健康状况的复杂需求。他们的病情由专门的医疗保健专业人员单独治疗,没有协调目标和治疗计划,这常常导致重复护理和医源性。数字工具被认为是实现以人为本、主动和综合护理的基础,但大多数实施都是孤立研究的,缺乏工作流程优化。与此同时,人们对在医疗保健中使用流程挖掘 (PM)(一种流程分析)越来越感兴趣。这是因为人们对如何提供护理知之甚少,特别是对于那些患有共存疾病的患者,他们的护理往往是分散的。事实上,越来越多的文献支持使用 PM 来改善患者治疗结果并降低成本和等待时间指南。为了解决多病种中护理分散和指南冲突的问题,研究人员开发了识别和解决不良相互作用的方法,例如约束逻辑编程和计算机可解释临床指南的分析。然而,这些几乎无法说明护理的提供方式,也无法识别新的、新兴的最佳实践模式。另一方面,尽管 PM 成为研究现有护理路径的常见方法,但只有 13% 的论文提出了新颖的解决方案,而且据我们所知,还没有发表关于多病态 PM 的研究。 目标该项目的主要目的是利用数据科学和 AI 技术为多病患者分析和推荐个性化护理路径,为数字化支持、以人为中心的集成护理模式做出贡献。将使用决策支持工具来传播研究结果。该项目分为三个主要部分,关注范围越来越广:糖尿病作为单一疾病,糖尿病及其相关并发症,例如肾病,最后是糖尿病伴有不相关的合并症,例如癌症。在每个范围部分,我们的目标是发现和分析护理途径,这将深入了解护理的提供方式以及护理的一致性。 发布的指南。此外,它将使我们能够提出新的护理途径,重点关注患者进展、疾病结果和护理效果。这些建议将作为决策支持工具进行传播,根据当前的医疗指南建议护理途径,或者当由于共存疾病的目标相互冲突而无法提供这些途径时,根据具有最佳结果的途径建议护理途径。将探索方法学数据集,以生成人群和数据的概述。这将包括事件时间分析以及预测模型来估计相关的临床结果。随后,将通过识别瓶颈来发现和分析医疗保健流程是否符合已发布的指南和性能,同时模型的正确性将得到正式验证。人工智能工具将用于对患者进行聚类和分类,从而识别和分析路径变异。为了为个性化护理计划提供建议,我们将使用人工智能方法对患者进行分组,以识别具有相似特征的亚群。每个子集内具有最佳结果的护理途径以及临床指南将用于推荐针对个人的新颖护理途径,然后这些途径将得到正式验证。最后,研究结果将以交互式应用程序的形式作为决策支持工具进行传播。输入患者特征后,它将以直观的形式向用户呈现不良事件预测风险的视觉表示。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Using machine learning to aid in recommending population-level interventions in schools
使用机器学习来帮助建议学校的人口干预措施
  • 批准号:
    2873192
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Decision support system for recommending EGFR-inhibiting drugs
推荐EGFR抑制药物的决策支持系统
  • 批准号:
    10010293
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Feasibility Studies
Improving Recommending and Understanding Schemas and Their Provenance
改进推荐和理解模式及其来源
  • 批准号:
    RGPIN-2017-04112
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Improving Recommending and Understanding Schemas and Their Provenance
改进推荐和理解模式及其来源
  • 批准号:
    RGPIN-2017-04112
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Automated Mining and Recommending Reusable Code for Data Science Projects
数据科学项目的自动化挖掘和推荐可重用代码
  • 批准号:
    551257-2020
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Improving Recommending and Understanding Schemas and Their Provenance
改进推荐和理解模式及其来源
  • 批准号:
    RGPIN-2017-04112
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Improving Recommending and Understanding Schemas and Their Provenance
改进推荐和理解模式及其来源
  • 批准号:
    507936-2017
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Detecting and Recommending Mitigations for Impactful Risky Software Changes
检测有影响的风险软件变更并提出缓解措施
  • 批准号:
    RGPIN-2015-06545
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Increasing HPV Vaccination Rates through Virtual Immersive Communication Training on Recommending Immunizations: An Efficacy Study of VICTORI
通过虚拟沉浸式推荐免疫沟通培训提高 HPV 疫苗接种率:VICTORI 的功效研究
  • 批准号:
    9894938
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Increasing HPV Vaccination Rates through Virtual Immersive Communication Training on Recommending Immunizations: An Efficacy Study of VICTORI
通过虚拟沉浸式推荐免疫沟通培训提高 HPV 疫苗接种率:VICTORI 的功效研究
  • 批准号:
    10059195
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了