Detecting and Recommending Mitigations for Impactful Risky Software Changes

检测有影响的风险软件变更并提出缓解措施

基本信息

  • 批准号:
    RGPIN-2015-06545
  • 负责人:
  • 金额:
    $ 2.48万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Software systems play an important role in our daily lives, making the quality of software systems of paramount importance. To ensure the quality of software systems, a large amount of research focused on the detection of source code packages, files and changes that contain defects. However, the adoption and usefulness of such approaches in practice remains limited. Some of the most commonly cited reasons for the lack of adoption are 1) metrics used in the detection are not actionable, 2) the impact of defects is not taken into consideration and 3) no guidance is given on how to mitigate the detected defects.******The aim of the proposed research is to address the aforementioned limitations, making defect detection techniques more pragmatic. To do so, we plan to propose models that use actionable metrics to detect impactful risky changes. Furthermore, we will use historical data and employ qualitative and quantitative approaches on the fixes of the impactful risky changes in order to propose mitigations for the detected impactful risky changes. ******The successful completion of this proposed project will enable software researchers and practitioners to better understand the key development factors that enable pragmatic defect detection. The novel contributions of the proposed research are: 1) the proposal of models that use actionable metrics to effectively detect impactful risky changes and 2) a catalog of mitigations that can be applied to address these impactful risky changes. Large-scale empirical studies will be performed using large open source and industrial projects, to determine the effectiveness of the proposed models, actionable metrics and proposed mitigations.*******The proposed research will have a direct impact on the software engineering research and practice since it will advance the field by providing pragmatic detection techniques, proposing novel mitigation strategies and providing an extensible tooling framework. Furthermore, the proposed research will expose, train and enable highly qualified personnel (HQP) to contribute to the state-of-the-art in software quality research.**
软件系统在我们的日常生活中扮演着重要的角色,因此软件系统的质量至关重要。为了确保软件系统的质量,大量的研究集中在检测包含缺陷的源代码包、文件和更改上。然而,这种做法在实践中的采纳量和有用性仍然有限。没有采用的一些最常引用的原因是:1)检测中使用的度量不可操作,2)没有考虑缺陷的影响,3)没有就如何减轻检测到的缺陷提供指导。*建议研究的目的是解决上述限制,使缺陷检测技术更加实用。为了做到这一点,我们计划提出使用可操作的指标来检测有影响的风险变化的模型。此外,我们将使用历史数据,并采用定性和定量的方法来确定有影响的风险变化,以便为检测到的有影响的风险变化提出缓解措施。*这个拟议项目的成功完成将使软件研究人员和从业者能够更好地了解实现实用缺陷检测的关键开发因素。拟议研究的新贡献是:1)提出了使用可操作的度量来有效地检测影响的风险变化的模型,以及2)可以应用于应对这些影响的风险变化的缓解措施的目录。将使用大型开源和工业项目进行大规模的实证研究,以确定建议的模型、可操作的度量和建议的缓解措施的有效性。*建议的研究将对软件工程研究和实践产生直接影响,因为它将通过提供实用的检测技术、提出新的缓解策略和提供可扩展的工具框架来推动该领域的发展。此外,拟议的研究将暴露、培训和使高素质人员(HQP)能够为软件质量研究的最新水平做出贡献。**

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shihab, Emad其他文献

A Large-Scale Empirical Study of Just-in-Time Quality Assurance
  • DOI:
    10.1109/tse.2012.70
  • 发表时间:
    2013-06-01
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Kamei, Yasutaka;Shihab, Emad;Ubayashi, Naoyasu
  • 通讯作者:
    Ubayashi, Naoyasu
A Comparison of Natural Language Understanding Platforms for Chatbots in Software Engineering
A Quantitative Comparison of Overlapping and Non-Overlapping Sliding Windows for Human Activity Recognition Using Inertial Sensors
  • DOI:
    10.3390/s19225026
  • 发表时间:
    2019-11-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Dehghani, Akbar;Sarbishei, Omid;Shihab, Emad
  • 通讯作者:
    Shihab, Emad
What are mobile developers asking about? A large scale study using stack overflow
  • DOI:
    10.1007/s10664-015-9379-3
  • 发表时间:
    2016-06-01
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Rosen, Christoffer;Shihab, Emad
  • 通讯作者:
    Shihab, Emad
What Do Mobile App Users Complain About?
  • DOI:
    10.1109/ms.2014.50
  • 发表时间:
    2015-05-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Khalid, Hammad;Shihab, Emad;Hassan, Ahmed E.
  • 通讯作者:
    Hassan, Ahmed E.

Shihab, Emad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shihab, Emad', 18)}}的其他基金

Using Analytics to Improve Trust in Software Ecosystems
使用分析来提高对软件生态系统的信任
  • 批准号:
    RGPAS-2020-00087
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Using Analytics to Improve Trust in Software Ecosystems
使用分析来提高对软件生态系统的信任
  • 批准号:
    RGPIN-2020-06811
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Using Analytics to Improve Trust in Software Ecosystems
使用分析来提高对软件生态系统的信任
  • 批准号:
    RGPIN-2020-06811
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
AskGit: Chat with your Software Project (Lab2Market)
AskGit:与您的软件项目聊天 (Lab2Market)
  • 批准号:
    571242-2022
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Idea to Innovation
A Training Program on the Development, Deployment and Servicing of Artificial Intelligence-based Software Systems
基于人工智能的软件系统的开发、部署和服务培训计划
  • 批准号:
    555406-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Collaborative Research and Training Experience
Using Analytics to Improve Trust in Software Ecosystems
使用分析来提高对软件生态系统的信任
  • 批准号:
    RGPAS-2020-00087
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Using Analytics to Improve Trust in Software Ecosystems
使用分析来提高对软件生态系统的信任
  • 批准号:
    RGPIN-2020-06811
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Using big data analytics to improve decision making of system-on-module based solutions
使用大数据分析来改进基于模块系统的解决方案的决策
  • 批准号:
    506894-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Strategic Projects - Group
Detecting and Recommending Mitigations for Impactful Risky Software Changes
检测有影响的风险软件变更并提出缓解措施
  • 批准号:
    RGPIN-2015-06545
  • 财政年份:
    2018
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Using big data analytics to improve decision making of system-on-module based solutions
使用大数据分析来改进基于模块系统的解决方案的决策
  • 批准号:
    506894-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Strategic Projects - Group

相似海外基金

Using machine learning to aid in recommending population-level interventions in schools
使用机器学习来帮助建议学校的人口干预措施
  • 批准号:
    2873192
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Studentship
Decision support system for recommending EGFR-inhibiting drugs
推荐EGFR抑制药物的决策支持系统
  • 批准号:
    10010293
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Feasibility Studies
Improving Recommending and Understanding Schemas and Their Provenance
改进推荐和理解模式及其来源
  • 批准号:
    RGPIN-2017-04112
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Improving Recommending and Understanding Schemas and Their Provenance
改进推荐和理解模式及其来源
  • 批准号:
    RGPIN-2017-04112
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Automated Mining and Recommending Reusable Code for Data Science Projects
数据科学项目的自动化挖掘和推荐可重用代码
  • 批准号:
    551257-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    University Undergraduate Student Research Awards
Analysing and recommending personalised care pathways for multimorbid patients with the use of artificial intelligence (AI) techniques
利用人工智能 (AI) 技术分析并推荐多病患者的个性化护理途径
  • 批准号:
    2443005
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Studentship
Improving Recommending and Understanding Schemas and Their Provenance
改进推荐和理解模式及其来源
  • 批准号:
    RGPIN-2017-04112
  • 财政年份:
    2019
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Improving Recommending and Understanding Schemas and Their Provenance
改进推荐和理解模式及其来源
  • 批准号:
    507936-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Increasing HPV Vaccination Rates through Virtual Immersive Communication Training on Recommending Immunizations: An Efficacy Study of VICTORI
通过虚拟沉浸式推荐免疫沟通培训提高 HPV 疫苗接种率:VICTORI 的功效研究
  • 批准号:
    9894938
  • 财政年份:
    2019
  • 资助金额:
    $ 2.48万
  • 项目类别:
Increasing HPV Vaccination Rates through Virtual Immersive Communication Training on Recommending Immunizations: An Efficacy Study of VICTORI
通过虚拟沉浸式推荐免疫沟通培训提高 HPV 疫苗接种率:VICTORI 的功效研究
  • 批准号:
    10059195
  • 财政年份:
    2019
  • 资助金额:
    $ 2.48万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了