A novel approach to predict energy of physical activity

预测身体活动能量的新方法

基本信息

  • 批准号:
    6941312
  • 负责人:
  • 金额:
    $ 33.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-09-01 至 2009-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The role of physical activity (PA) in many chronic diseases is increasingly being recognized. The accurate and detailed measurement of PA is a crucial prerequisite to further explore its association with health and disease. Small and wearable accelerometers allow objective measurement of PA (PA counts), while also providing a rough estimation of the energy expenditure associated with PA (EEAcT). However, current PA monitors are restricted to using time-averaged signals and linear regression algorithms which consistently provide inaccurate predictions of EEAc-r- the key characteristic of PA intensity. To fundamentally guide the future designs of PA monitors to accurately predict EEAcT, we hypothesize that parameters can be extracted from the raw acceleration and postural signals of multiple body segments. Using a unique combination of sophisticated instruments and technical expertise, we propose to develop a novel analytical approach for accurately predicting EEAc-reutilizing the raw acceleration signals from upper and lower body segments. This is accomplished by continuously measuring movement and postures, at a rate of 32 samples/second, using a custom-designed monitor that consists of an array of 10 accelerometers. We will measure minute-to minute EEAcT using a whole-room indirect calorimeter for a 24-hour period, and a portable calorimeter for a 3-hour free-living period. This measured EEAcT will be used as the target for the prediction model. We will apply an advanced modeling technique (artificial neural networks) to model the extracted PA parameters to arrive at an accurate prediction of EEAcT. Repeated measurements will be used to cross-validate the prediction accuracy of the model. The study is designed to encompass a heterogeneous population sample (n=200) of obese, overweight, and lean adults, and to include a wide range of PA types and intensities. The significance of this research is that our results will provide insight for developing the next-generation PA monitors, such as where on the body the sensors should be placed, what signal parameters should be extracted, and how the analytical algorithms should be applied. In addition, our study will improve and validate EEAcT prediction by several market-available PA monitors, thus offering immediate benefits to their applications in the field.
描述(由申请人提供):体力活动(PA)在许多慢性疾病中的作用越来越受到认可。PA的准确和详细的测量是进一步探索其与健康和疾病的关系的重要前提。小型和可穿戴的加速度计允许PA的客观测量(PA计数),同时还提供与PA相关的能量消耗的粗略估计(EEAcT)。然而,目前的PA监测器仅限于使用时间平均信号和线性回归算法,这些算法始终提供不准确的EEAc-r预测-PA强度的关键特征。为了从根本上指导PA监视器的未来设计以准确预测EEAcT,我们假设可以从多个身体部分的原始加速度和姿势信号中提取参数。使用先进的仪器和技术专业知识的独特组合,我们建议开发一种新的分析方法,用于准确预测EEAc重新利用来自上半身和下半身的原始加速度信号。这是通过使用由10个加速度计阵列组成的定制设计的监视器以32个样本/秒的速率连续测量运动和姿势来实现的。我们将使用全房间间接热量计测量24小时内的每分钟EEAcT,并使用便携式热量计测量3小时的自由生活时间。该测量的EEAcT将用作预测模型的目标。我们将采用先进的建模技术(人工神经网络)来模拟提取的PA参数,以达到准确的预测EEAcT。重复测量将用于交叉验证模型的预测准确性。该研究旨在涵盖肥胖、超重和消瘦成人的异质性人群样本(n=200),并包括广泛的PA类型和强度。这项研究的意义在于,我们的研究结果将为开发下一代PA监测器提供见解,例如传感器应该放置在身体上的哪个位置,应该提取什么信号参数,以及应该如何应用分析算法。此外,我们的研究将改善和验证EEAcT预测几个市场上可用的PA监测器,从而提供直接的好处,他们在该领域的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KONG Y CHEN其他文献

KONG Y CHEN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KONG Y CHEN', 18)}}的其他基金

AUTONOMIC CONTRIBUTIONS TO ENERGY METABOLISM IN HUMANS
自主对人类能量代谢的贡献
  • 批准号:
    7375577
  • 财政年份:
    2005
  • 资助金额:
    $ 33.51万
  • 项目类别:
Physical Activity Energy Expenditure & Adolescent Obesit
身体活动能量消耗
  • 批准号:
    7023159
  • 财政年份:
    2005
  • 资助金额:
    $ 33.51万
  • 项目类别:
NOVEL APPROACH TO PREDICT ENERGY OF PHYSICAL ACTIVITY
预测身体活动能量的新方法
  • 批准号:
    7375650
  • 财政年份:
    2005
  • 资助金额:
    $ 33.51万
  • 项目类别:
THE VALIDATION OF THE IDEEA ACTIVITY MONITOR DEVICE IN PREDICTING ENERGY EXPENDE
IDEEA 活动监测装置预测能源消耗的验证
  • 批准号:
    7375603
  • 财政年份:
    2005
  • 资助金额:
    $ 33.51万
  • 项目类别:
THE VALIDATION OF THE IDEEA ACTIVITY MONITOR DEVICE IN PREDICTING ENERGY EXPENDE
IDEEA 活动监测装置预测能源消耗的验证
  • 批准号:
    7207238
  • 财政年份:
    2004
  • 资助金额:
    $ 33.51万
  • 项目类别:
PORTABLE PHYSICAL ACTIVITY MONITORS FOR MEASURING ENERGY EXPENDITURE IN ROTC
用于测量后备军官训练队能量消耗的便携式身体活动监测仪
  • 批准号:
    7207279
  • 财政年份:
    2004
  • 资助金额:
    $ 33.51万
  • 项目类别:
AUTONOMIC CONTRIBUTIONS TO ENERGY METABOLISM IN HUMANS
自主对人类能量代谢的贡献
  • 批准号:
    7207205
  • 财政年份:
    2004
  • 资助金额:
    $ 33.51万
  • 项目类别:
A novel approach to predict energy of physical activity
预测身体活动能量的新方法
  • 批准号:
    6815102
  • 财政年份:
    2004
  • 资助金额:
    $ 33.51万
  • 项目类别:
NOVEL APPROACH TO PREDICT ENERGY OF PHYSICAL ACTIVITY
预测身体活动能量的新方法
  • 批准号:
    7207310
  • 财政年份:
    2004
  • 资助金额:
    $ 33.51万
  • 项目类别:
Portable Physical Activity Monitors for Measuring Energy Expenditure in ROTC...
用于测量 ROTC 能量消耗的便携式体力活动监测器...
  • 批准号:
    7041463
  • 财政年份:
    2003
  • 资助金额:
    $ 33.51万
  • 项目类别:

相似海外基金

Sustained eIF5A hypusination at the core of brain metabolic dysfunction in TDP-43 proteinopathies
持续的 eIF5A 抑制是 TDP-43 蛋白病脑代谢功能障碍的核心
  • 批准号:
    10557547
  • 财政年份:
    2023
  • 资助金额:
    $ 33.51万
  • 项目类别:
Mitochondrial positioning regulates redox-signaling during cell migration
线粒体定位调节细胞迁移过程中的氧化还原信号
  • 批准号:
    10520211
  • 财政年份:
    2023
  • 资助金额:
    $ 33.51万
  • 项目类别:
Ceramides as Novel Mediators of Tubular Metabolic Dysfunction Driving Kidney Injury
神经酰胺作为肾小管代谢功能障碍驱动肾损伤的新型调节剂
  • 批准号:
    10677394
  • 财政年份:
    2023
  • 资助金额:
    $ 33.51万
  • 项目类别:
Energizing and Protecting Axons Through Metabolic Coupling to Schwann Cells
通过与雪旺细胞的代谢耦合来激活和保护轴突
  • 批准号:
    10647707
  • 财政年份:
    2023
  • 资助金额:
    $ 33.51万
  • 项目类别:
Circadian and mitochondrial dysfunction in alcohol-related liver disease
酒精相关性肝病中的昼夜节律和线粒体功能障碍
  • 批准号:
    10667861
  • 财政年份:
    2023
  • 资助金额:
    $ 33.51万
  • 项目类别:
Novel first-in-class Therapeutics for Rheumatoid Arthritis
类风湿关节炎的一流新疗法
  • 批准号:
    10696749
  • 财政年份:
    2023
  • 资助金额:
    $ 33.51万
  • 项目类别:
Neuronal ABCA7 loss of function and Alzheimer’s disease
神经元 ABCA7 功能丧失与阿尔茨海默病
  • 批准号:
    10629715
  • 财政年份:
    2023
  • 资助金额:
    $ 33.51万
  • 项目类别:
Oxidative Stress and Mitochondrial Dysfunction in Chemogenetic Heart Failure
化学遗传性心力衰竭中的氧化应激和线粒体功能障碍
  • 批准号:
    10643012
  • 财政年份:
    2023
  • 资助金额:
    $ 33.51万
  • 项目类别:
Influence of Particulate Matter on Fetal Mitochondrial Programming
颗粒物对胎儿线粒体编程的影响
  • 批准号:
    10734403
  • 财政年份:
    2023
  • 资助金额:
    $ 33.51万
  • 项目类别:
High subzero preservation of liver for transplantation
移植用肝脏的高度低温保存
  • 批准号:
    10815970
  • 财政年份:
    2023
  • 资助金额:
    $ 33.51万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了