Mechanism of Resistance Artery Contraction

动脉收缩阻力机制

基本信息

项目摘要

Pressure-induced (myogenic) tone is a physiological response centrally involved in autoregulation of blood flow in the brain. A fundamental mechanism involved in the regulation of cerebral artery constriction is depolarization of the smooth muscle cell membrane and increased Ca2+ entry. We have recently identified a cerebrovascular cation channel that could play a major role in both the depolarization and Ca2+-entry processes. Additional preliminary data indicate that this cation channel may be a member of the mammalian transient receptor potential (Trp) family. In the proposed studies, we will characterized the properties of these channels and determine their functional roles in the cerebral circulation. Specific Aim 1. To elucidate the biophysical and pharmacological properties of cation channels activated by cell swelling or increased pressure in cerebrovascular smooth muscle cells and the signal transduction pathways involved in their regulation. These experiments will provide evidence that will establish the role of these channels in pressure-induced depolarization of cerebral artery myocytes. Specific Aim 2. To establish the presence and functional roles of Trp channels in cerebral artery smooth muscle cells. This aim will determine which of the Trp channels are present in cerebrovascular muscle cells and what physiological roles they serve in cerebral resistance arteries. These studies will be performed using a unique combination of approaches from molecular to whole tissue levels to provide an integrated picture of cerebral artery contractile mechanisms involving membrane potential and regulation of [Ca2+]i. State-of-the-art techniques will be employed including membranes potential, cell Ca2+, and diameter measurements in intact arteries, ion channel and cell Ca2+, measurements in freshly isolated vascular smooth muscle cells, and anti- sense oligodeoxynucleotide strategies to suppress Trp channel function. The proposed studies should significantly advance our understanding of the role of cationic channels in the regulation of vascular tone in the brain and indicate novel targets for agents that could be used to correct pathological alterations in cerebral blood flow.
压力诱发(肌源性)张力是一种生理反应,主要参与脑血流的自动调节。参与脑动脉收缩调控的一个基本机制是平滑肌细胞膜去极化和Ca2+进入增加。我们最近发现了一个脑血管阳离子通道,它可以在去极化和Ca2+进入过程中发挥重要作用。其他初步数据表明,该阳离子通道可能是哺乳动物瞬时受体电位(Trp)家族的一员。在拟议的研究中,我们将表征这些通道的特性并确定它们在脑循环中的功能作用。具体目标阐明脑血管平滑肌细胞肿胀或压力升高激活的阳离子通道的生物物理和药理学特性及其调控所涉及的信号转导途径。这些实验将提供证据,将建立这些通道在压力诱导的脑动脉肌细胞去极化中的作用。具体目标2。目的:探讨脑动脉平滑肌细胞中色氨酸通道的存在及其功能作用。这一目的将确定哪些色氨酸通道存在于脑血管肌细胞中,以及它们在脑阻力动脉中起什么生理作用。这些研究将使用从分子到整个组织水平的独特方法组合进行,以提供涉及膜电位和[Ca2+]i调节的脑动脉收缩机制的综合图像。将采用最先进的技术,包括膜电位,细胞Ca2+和直径测量在完整的动脉,离子通道和细胞Ca2+,测量在新鲜分离的血管平滑肌细胞,反义寡脱氧核苷酸策略抑制色氨酸通道功能。拟议的研究将显著推进我们对阳离子通道在脑血管张力调节中的作用的理解,并指出可用于纠正脑血流病理改变的药物的新靶点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JOSEPH ELLIOTT BRAYDEN其他文献

JOSEPH ELLIOTT BRAYDEN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JOSEPH ELLIOTT BRAYDEN', 18)}}的其他基金

Ca Channels, TRP Channels & Vasomotor Function in Cerebral Arterioles
Ca 通道、TRP 通道
  • 批准号:
    7998811
  • 财政年份:
    2010
  • 资助金额:
    $ 34.09万
  • 项目类别:
Mechanisms of resistance artery contraction
阻力动脉收缩的机制
  • 批准号:
    7756578
  • 财政年份:
    1997
  • 资助金额:
    $ 34.09万
  • 项目类别:
MECHANISMS OF CEREBRAL RESISTANCE ARTERY CONTRACTION
脑阻力动脉收缩的机制
  • 批准号:
    2685534
  • 财政年份:
    1997
  • 资助金额:
    $ 34.09万
  • 项目类别:
Mechanism of Resistance Artery Contraction
动脉收缩阻力机制
  • 批准号:
    6621656
  • 财政年份:
    1997
  • 资助金额:
    $ 34.09万
  • 项目类别:
Mechanism of Resistance Artery Contraction
动脉收缩阻力机制
  • 批准号:
    6435573
  • 财政年份:
    1997
  • 资助金额:
    $ 34.09万
  • 项目类别:
Mechanisms of resistance artery contraction
阻力动脉收缩的机制
  • 批准号:
    7342811
  • 财政年份:
    1997
  • 资助金额:
    $ 34.09万
  • 项目类别:
MECHANISMS OF CEREBRAL RESISTANCE ARTERY CONTRACTION
脑阻力动脉收缩的机制
  • 批准号:
    2840176
  • 财政年份:
    1997
  • 资助金额:
    $ 34.09万
  • 项目类别:
MECHANISMS OF CEREBRAL RESISTANCE ARTERY CONTRACTION
脑阻力动脉收缩的机制
  • 批准号:
    2901306
  • 财政年份:
    1997
  • 资助金额:
    $ 34.09万
  • 项目类别:
MECHANISMS OF CEREBRAL RESISTANCE ARTERY CONTRACTION
脑阻力动脉收缩的机制
  • 批准号:
    6183902
  • 财政年份:
    1997
  • 资助金额:
    $ 34.09万
  • 项目类别:
Mechanisms of resistance artery contraction
阻力动脉收缩的机制
  • 批准号:
    7568757
  • 财政年份:
    1997
  • 资助金额:
    $ 34.09万
  • 项目类别:

相似海外基金

ROLE OF CELL ADHESION IN BIOLOGICAL SIGNAL TRANSDUCTION
细胞粘附在生物信号转导中的作用
  • 批准号:
    6238317
  • 财政年份:
    1997
  • 资助金额:
    $ 34.09万
  • 项目类别:
CELL ADHESION IN BIOLOGICAL SIGNAL TRANSDUCTION
生物信号转导中的细胞粘附
  • 批准号:
    3732412
  • 财政年份:
  • 资助金额:
    $ 34.09万
  • 项目类别:
ROLE OF CELL ADHESION IN BIOLOGICAL SIGNAL TRANSDUCTION
细胞粘附在生物信号转导中的作用
  • 批准号:
    5210031
  • 财政年份:
  • 资助金额:
    $ 34.09万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了