Developing machine learning methods using antibody structural and sequence data to accelerate vaccine design

使用抗体结构和序列数据开发机器学习方法来加速疫苗设计

基本信息

  • 批准号:
    2451872
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

This DPhil project aims to use machine learning (ML) techniques to increase the speed and reduce the cost of vaccine design. The project is a collaboration between the Oxford Protein Informatics Group (OPIG) and GSK Vaccines. The goals of this work fall within the EPSRC Analytical Science and Mathematical Biology research areas. Currently, vaccines and antibody therapeutics typically take 5-10 years and approximately £1bn to bring to market. Pre-clinical trials comprise a large proportion of this development time as researchers aim to minimise risks and maximise benefits before assessing vaccines in human volunteers. This pre-clinical trial stage can be sped up significantly by using computational methods to better select vaccine candidates to take into the lab for testing. Furthermore, improved vaccine selection at this early stage can result in higher efficacy products being produced at the end. The development of high-throughput sequencing techniques and accurate protein structure modelling tools have given access to large amounts of data in which to search for promising antibody leads. However, searching this space is still a challenge as it is not yet possible to exactly model antibody-antigen interactions due to the great computational complexity involved. Machine learning techniques also struggle to accurately search this space as only a limited amount of labelled data for training is currently available. This labelled data is largely comprised of antibody-antigen complexes imaged using X-ray crystallography - an expensive and time-consuming technique. These costs mean structural data exists for only a few thousand of complexes compared to the billions of antibody sequences that are now available. This project aims to maximise the utility of the structural and sequence data that is available to train deep neural networks to improve our predictions of how antibodies and antigens interact. These predictive methods will then be developed into robust, open-source software tools that will form part of SAbPred - OPIG's antibody prediction toolbox. This work will differentiate and improve upon existing techniques by using physically important characteristics to label data combined with descriptive feature embeddings obtained from state-of-the-art transformer models.
这个哲学博士项目旨在使用机器学习(ML)技术来提高疫苗设计的速度并降低成本。该项目是牛津蛋白质信息组(OPIG)和GSK疫苗之间的合作。这项工作的目标属于EPSRC分析科学和数学生物学研究领域。目前,疫苗和抗体疗法通常需要5-10年时间和大约10亿英镑才能推向市场。临床前试验占开发时间的很大一部分,因为研究人员的目标是在人类志愿者中评估疫苗之前将风险最小化并将收益最大化。这个临床前试验阶段可以通过使用计算方法来更好地选择候选疫苗进入实验室进行测试来显着加快。此外,在这一早期阶段改进疫苗选择可以导致最终生产出更高功效的产品。高通量测序技术和精确的蛋白质结构建模工具的发展提供了大量的数据来寻找有前途的抗体线索。然而,搜索这个空间仍然是一个挑战,因为由于所涉及的巨大计算复杂性,还不可能精确地建模抗体-抗原相互作用。机器学习技术也很难准确搜索这个空间,因为目前只有有限数量的标记数据可用于训练。这种标记的数据主要由使用X射线晶体学成像的抗体-抗原复合物组成-这是一种昂贵且耗时的技术。这些成本意味着与现在可用的数十亿个抗体序列相比,只有几千个复合物的结构数据存在。该项目旨在最大限度地利用可用于训练深度神经网络的结构和序列数据,以改善我们对抗体和抗原如何相互作用的预测。然后,这些预测方法将被开发成强大的开源软件工具,这些工具将成为SAbPred-OPIG抗体预测工具箱的一部分。这项工作将区分和改进现有的技术,通过使用物理上重要的特征来标记数据,结合从最先进的Transformer模型中获得的描述性特征嵌入。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
非标准随机调度模型的最优动态策略
  • 批准号:
    71071056
  • 批准年份:
    2010
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
微生物发酵过程的自组织建模与优化控制
  • 批准号:
    60704036
  • 批准年份:
    2007
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Investigating the potential for developing self-regulation in foreign language learners through the use of computer-based large language models and machine learning
通过使用基于计算机的大语言模型和机器学习来调查外语学习者自我调节的潜力
  • 批准号:
    24K04111
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developing and Understanding Thermally Conductive Polymers by Combining Molecular Simulation, Machine Learning and Experiment
通过结合分子模拟、机器学习和实验来开发和理解导热聚合物
  • 批准号:
    2332270
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Developing machine learning based approaches to weld residual stress problems
开发基于机器学习的方法来解决焊接残余应力问题
  • 批准号:
    2894296
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing computational methods to identify of endogenous substrates of E3 ubiquitin ligases and molecular glue degraders
开发计算方法来鉴定 E3 泛素连接酶和分子胶降解剂的内源底物
  • 批准号:
    10678199
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Developing Explainable AI for Equitable Risk Stratification of Atrial Fibrillation and Stroke
开发可解释的人工智能以实现心房颤动和中风的公平风险分层
  • 批准号:
    10752585
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A Connectomic Analysis of a Developing Brain Undergoing Neurogenesis
正在经历神经发生的发育中大脑的连接组学分析
  • 批准号:
    10719296
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Developing a P4 Medicine Approach to Obstructive Sleep Apnea
开发治疗阻塞性睡眠呼吸暂停的 P4 医学方法
  • 批准号:
    10555805
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Developing novel machine learning approaches to studying cell development
开发新的机器学习方法来研究细胞发育
  • 批准号:
    2326879
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Pig ID: developing a deep learning machine vision system to track pigs using individual biometrics
Pig ID:开发深度学习机器视觉系统,利用个体生物识别技术跟踪猪
  • 批准号:
    BB/X001385/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Pig ID: developing a deep learning machine vision system to track pigs using individual biometrics
Pig ID:开发深度学习机器视觉系统,利用个体生物识别技术跟踪猪
  • 批准号:
    BB/X001830/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了