Developing Explainable AI for Equitable Risk Stratification of Atrial Fibrillation and Stroke
开发可解释的人工智能以实现心房颤动和中风的公平风险分层
基本信息
- 批准号:10752585
- 负责人:
- 金额:$ 5.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAffectAmericanArrhythmiaArtificial IntelligenceAtrial FibrillationAwarenessBig DataBloodBlood coagulationBlood flowBrainCardiologyCaringCause of DeathClassificationClinicalCoagulation ProcessComplexComputing MethodologiesConfounding Factors (Epidemiology)DataData SetDevelopmentDiagnosisDisparityEquityEtiologyHealth systemHeart AtriumHospital CostsIndividualKnowledgeMachine LearningMathematicsMentorshipMethodsModelingMorbidity - disease rateOutcomePatientsPhysiciansPopulation HeterogeneityPrevalencePreventionPrevention therapyPublishingResearch PersonnelRiskRisk FactorsRisk ManagementScientistStrokeStroke preventionTrainingTravelUniversitiesUtahWorkartificial intelligence methodclinical riskclinical trainingcomorbiditycomputerized toolsdisparity reductionexperiencefallshealth care disparityhealth datahealth disparityimprovedinnovationlarge datasetsmachine learning methodmodel buildingmortalitymultidisciplinarynoveloutcome predictionpatient subsetsrisk predictionrisk prediction modelrisk stratificationsocialsocial health determinantssocioeconomicsstandard of carestroke risksynergismtherapy developmenttooltreatment guidelinesweb app
项目摘要
PROJECT SUMMARY
Atrial fibrillation (AF) leads to significant morbidity, mortality, and over $6B in annual hospitalization costs
among the nearly 6 million US adults it affects. AF is a cardiac arrhythmia which can cause blood to collect in
the atria and form clots that travel to the brain resulting in a stroke. Efforts to reduce rates of stroke related to
AF are limited by rudimentary stroke risk stratification tools and disparities in care. There is a critical need for
personalized, socially aware, equitable stroke risk prediction among patients with AF to enable optimal
implementation of contemporary stroke-prevention therapies.
The objective of this proposal is to use artificial intelligence (AI) and machine learning methods to capture and
quantify synergies among known and newly discovered AF risk factors in socioeconomic contexts. My central
hypothesis is that stroke prevention can be improved through methods that leverage computational methods
on large datasets augmented with information on social determinants of health (SDoH). Preliminary studies by
our group and others have revealed subgroups of patients for whom SDoH factors are critical for accurate risk
stratification. Aim 1 is to discover new risk-factor relationships for patients with AF that include SDoH data,
using an innovative comorbidity discovery framework (Poisson Binomial Comorbidity Discovery). Aim 2
focuses on building models that combine the variables identified in Aim 1 with established risk factors to predict
outcomes using AI methods. To do so, I will build novel Probabilistic Graphical Models (PGMs) to understand
the impact of SDoH and newly identified factors on AF-related stroke risk.
The primary innovation in this proposal is employing novel analytic approaches to understand and reduce
disparities in AF risk prediction models. The proposal aims to provide means for improved care across the
spectrum of patients with AF and address disparities in the present standard of care. The AI tools created will
be readily accessible and interpretable by clinicians and patients to help guide individual treatment decisions.
Completion of this proposal will yield a personalized and equitable approach to stroke prevention in the context
of AF.
This project provides multidisciplinary computational and clinical training augmented with mentorship from
experts in both domains. The outlined training will provide me with the computational and translational
cardiology experiences required to succeed as an independent investigator and physician-scientist.
项目摘要
房颤(AF)导致显著的发病率、死亡率和每年超过60亿美元的住院费用
在近600万美国成年人中,AF是一种心律失常,可导致血液聚集在
心房并形成血栓,血栓进入大脑导致中风。努力降低与以下因素相关的中风发生率
房颤受到基本卒中风险分层工具和护理差异的限制。迫切需要掌握
在AF患者中进行个性化、社会意识、公平的卒中风险预测,
现代中风预防疗法的实施。
该提案的目标是使用人工智能(AI)和机器学习方法来捕获和
量化社会经济背景下已知和新发现的AF风险因素之间的协同作用。我的中枢
一种假设是,可以通过利用计算方法的方法来改善中风预防
在大型数据集上增加了健康的社会决定因素(SDoH)的信息。初步研究由
我们的研究小组和其他研究小组已经揭示了SDoH因素对准确风险至关重要的患者亚组
分层目的1是发现AF患者的新风险因素关系,包括SDoH数据,
使用创新的comormonism发现框架(泊松二项式comormonism发现)。目的2
重点是建立模型,将目标1中确定的变量与既定的风险因素相结合,
使用AI方法。为此,我将构建新颖的概率图形模型(PGMs)来理解
SDoH和新发现的因素对AF相关卒中风险的影响。
该提案的主要创新是采用新颖的分析方法来理解和减少
AF风险预测模型的差异。该提案旨在为改善整个国家的护理提供手段。
房颤患者的范围,并解决目前标准治疗的差异。创建的AI工具将
临床医生和患者可以随时访问和解释,以帮助指导个人治疗决策。
完成这一建议将产生一个个性化的和公平的方法来预防中风的背景下,
的AF。
该项目提供多学科的计算和临床培训,
这两个领域的专家。概述的培训将为我提供计算和翻译
作为一名独立的研究者和医生-科学家所需的心脏病学经验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Raquel Reisinger其他文献
Raquel Reisinger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
- 批准号:
2230829 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)