Understanding the role of RNA binding proteins in the regulation of NF-kappa B dynamics, inflammation and cell death

了解 RNA 结合蛋白在调节 NF-kappa B 动力学、炎症和细胞死亡中的作用

基本信息

  • 批准号:
    2458810
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

NF-kB is a key signalling system that controls inflammation and cell fate, dysregulation of which can lead to inflammatory disease or cancer. NF-kB signalling is complicated and not fully understood. The NF-kB complex shuttles between the nucleus and cytoplasm in activated cells. The timing of this movement is believed to be critical to the outcome of NF-kB signalling. A number of NF-kB inhibitors are involved in regulation of this timing, including IkBa and A20. We are particularly interested in the inflammation regulator A20, which plays an important role in the timing of NF-kB translocation. Temperature changes (in the fever range) have been found to affect the timing of NF-kB oscillations, and this is mediated through A20. Recent data suggests that A20 expression varies greatly from cell to cell. It is therefore important to understand factors that control A20 expression and function at the single cell level. RNA binding proteins and microRNAs are emerging as key regulators of cellular homeostasis. The RNA binding protein TTP/ZFP36 (and its paralogs), and miRNAs 125a and 125b can regulate A201,2. Our hypothesis is that regulation of A20 RNA stability and translation may explain different NF-kB dynamics in different tissues. Our preliminary data suggest that the control of ZFP36 and miR-125 expression by NF-kB may represent important new feedback loops that further regulate the NF-kB system. The student will work between labs with expertise in NF-kB signalling, bioinformatics and cell fate. Mike White has built many tools for the analysis of NF-kB dynamics in cells and tissues. Andrew Gilmore works on the control of cell death and the role of the Bcl-2 family of proteins, and has extensive experience in molecular and cell biology and gene editing. Sam Griffiths-Jones is a world expert on microRNAs and bioinformatics. Mark Muldoon provides mathematical modelling.This project offers an outstanding opportunity for a student who has an interest in identifying new fundamentally important mechanisms that can lead to new understanding of the causes of important human disease. They will be trained in techniques, including advanced (e.g. confocal) microscopy, fluorescence correlation spectroscopy, RNASeq, qPCR, smRNAFISH, proteomics, CRISPR, lentivirus manipulation and bioinformatics. 1. Tiedje, et al., (2016) The RNA-binding protein TTP is a global post-transcriptional regulator of feedback control in inflammation Nucleic Acids Research, 44: 7418-40,2. Kim, et al., (2012) MicroRNAs miR-125a and miR-125b constitutively activate the NF-kB pathway by targeting the tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20). PNAS 109: 7865-70.The student will be trained in molecular cell biology, physiology, genomics, biochemistry, advanced microscopy, genetic manipulation by CRISPR and lentiviral transduction. They would also be trained in bioinformatics and have the opportunity to be trained in mathematical modelling through working alongside theoreticians (Collaborative support on modelling with longstanding collaborators in Manchester and Warwick). The project would involve a collaboration with Dr Martin Turner, ISP lead for Immunology, Babraham Institute, a BBSRC Institute. The training fits BBSRC ENWW priorities in bio-imaging (M. White co-author of BBSRC bio-imaging report) and systems biology. The work on the project is relevant to understanding healthy ageing, a BBSRC priority area and studies fundamental mechanisms of control of gene expression and cell fate. This is relevant to the normal control of inflammation as well as aetiology of inflammatory disease and cancer.The student will have the opportunity to take part in training courses (Zeiss sponsored microscopy courses and BBSRC initiated SYSMIC online mathematical modelling training). They would work in an environment where cross-disciplinary teamwork is the norm, a BBSRC training priority identified in the BBSRC people and training report
NF-kB是控制炎症和细胞命运的关键信号系统,其失调可导致炎症性疾病或癌症。NF-kB信号是复杂的,尚未完全理解。NF-kB复合物在活化细胞中穿梭于细胞核和细胞质之间。这种运动的时机被认为对NF-kB信号传导的结果至关重要。许多NF-kB抑制剂参与这一时间的调控,包括IkBa和A20。我们对炎症调节因子A20特别感兴趣,它在NF-kB易位的时机中起着重要作用。温度变化(在发热范围内)已被发现影响NF-kB振荡的时间,这是通过A20介导的。最近的数据表明,细胞间A20的表达差异很大。因此,在单细胞水平上了解控制A20表达和功能的因素是很重要的。RNA结合蛋白和microrna正在成为细胞内稳态的关键调节因子。RNA结合蛋白TTP/ZFP36(及其类似物)和miRNAs 125a和125b可以调控a201,2。我们的假设是,A20 RNA稳定性和翻译的调控可能解释了不同组织中不同的NF-kB动态。我们的初步数据表明,NF-kB对ZFP36和miR-125表达的控制可能代表了进一步调节NF-kB系统的重要的新反馈回路。该学生将在具有NF-kB信号、生物信息学和细胞命运专业知识的实验室之间工作。Mike White建立了许多工具来分析细胞和组织中的NF-kB动态。Andrew Gilmore致力于细胞死亡的控制和Bcl-2蛋白家族的作用,在分子和细胞生物学以及基因编辑方面拥有丰富的经验。Sam Griffiths-Jones是microrna和生物信息学领域的世界级专家。Mark Muldoon提供了数学模型。该项目为有兴趣确定新的重要机制的学生提供了一个绝佳的机会,这些机制可以导致对重要人类疾病原因的新理解。他们将接受技术培训,包括先进的(如共聚焦)显微镜、荧光相关光谱、RNASeq、qPCR、smRNAFISH、蛋白质组学、CRISPR、慢病毒操作和生物信息学。1. Tiedje等,(2016)rna结合蛋白TTP是炎症反馈控制的全局转录后调控因子。核酸研究,44:7418-40,2。Kim等(2012)MicroRNAs miR-125a和miR-125b通过靶向肿瘤坏死因子α诱导蛋白3 (TNFAIP3, A20)组成性激活NF-kB通路。Pnas 109: 7865-70。学生将接受分子细胞生物学、生理学、基因组学、生物化学、高级显微镜、CRISPR基因操作和慢病毒转导等方面的培训。他们还将接受生物信息学方面的培训,并有机会通过与理论家一起工作来接受数学建模方面的培训(与曼彻斯特和沃里克的长期合作者合作支持建模)。该项目将涉及与马丁·特纳博士合作,他是Babraham研究所免疫学的ISP负责人,也是BBSRC研究所的一员。培训符合BBSRC ENWW在生物成像(M. White, BBSRC生物成像报告的合著者)和系统生物学方面的优先事项。该项目的工作与了解健康衰老有关,这是BBSRC的优先领域,并研究基因表达和细胞命运控制的基本机制。这与炎症的正常控制以及炎症性疾病和癌症的病因学有关。学生将有机会参加培训课程(蔡司赞助的显微镜课程和BBSRC发起的SYSMIC在线数学建模培训)。他们将在一个跨学科团队合作是常态的环境中工作,这是BBSRC人员和培训报告中确定的BBSRC培训重点

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

PfAP2-R介导的PfCRT转录调控在恶性疟原虫对喹啉类药物抗性中的作用及机制研究
  • 批准号:
    82372275
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Sestrin2抑制内质网应激对早产儿视网膜病变的调控作用及其机制研究
  • 批准号:
    82371070
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目

相似海外基金

Understanding the role of phosphorylation in RNA polymerase II transcription
了解磷酸化在 RNA 聚合酶 II 转录中的作用
  • 批准号:
    BB/Y004590/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Understanding the role of ribosome-associated long non-coding RNA in cancers of the neural crest
了解核糖体相关长非编码 RNA 在神经嵴癌中的作用
  • 批准号:
    2879751
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding and Controlling the Contribution of Fibrinolysis to Bleeding Using a Long-Acting Antifibrinolytic RNA Therapy
使用长效抗纤溶 RNA 疗法了解和控制纤溶对出血的影响
  • 批准号:
    10737327
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Understanding the antiviral roles of acellular RNA quality control pathway
了解非细胞 RNA 质量控制途径的抗病毒作用
  • 批准号:
    10714668
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Understanding and targeting RNA/transcription-dependent DNA repair in cancer cells
了解和靶向癌细胞中的 RNA/转录依赖性 DNA 修复
  • 批准号:
    10516451
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Understanding and targeting RNA/transcription-dependent DNA repair in cancer cells
了解和靶向癌细胞中的 RNA/转录依赖性 DNA 修复
  • 批准号:
    10680494
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
RNA virus capture of host chemokines: Understanding novel viral mechanisms of immune manipulation
RNA病毒捕获宿主趋化因子:了解免疫操纵的新病毒机制
  • 批准号:
    10452788
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Understanding the role of RNA in regulating metabolic enzymes in multi-drug resistant Staphylococcus aureus
了解 RNA 在调节多重耐药金黄色葡萄球菌代谢酶中的作用
  • 批准号:
    2745314
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the role of adiposity and adipokine-related RNA expression in the tumor microenvironment on breast cancer outcomes in a racially and ethnically diverse sample
了解肿瘤微环境中肥胖和脂肪因子相关 RNA 表达对种族和民族多样化样本中乳腺癌结果的作用
  • 批准号:
    10602753
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
RNA virus capture of host chemokines: Understanding novel viral mechanisms of immune manipulation
RNA病毒捕获宿主趋化因子:了解免疫操纵的新病毒机制
  • 批准号:
    10551229
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了