Singular Information for Cancer Cluster Detection

用于癌症簇检测的单一信息

基本信息

  • 批准号:
    6951807
  • 负责人:
  • 金额:
    $ 7.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-09-22 至 2007-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): When rare cancers, such as larynx or childhood leukemia, are encountered it is often of interest to assess whether clustering of cases has arisen. Typically large areas of zero-incidence are punctuated with small aggregations of cases. There is a need to be able to detect clusters of certain cancers as these can lead to important information concerning general etiology of the disease and localized environmental risk factors for the disease. In cancer surveillance the detection of clustering has become important due to the perceived residential environmental risks relating to certain industrial/commercial processes or activities (such as waste disposal, effluent dispersal, pesticide dispersal, mobile communication broadcasting). The types of disease outcome of concern have varied from respiratory cancers such as lung or larynx, to childhood leukemia, non-Hodgkin's lymphoma, and soft tissue sarcomas. The need for appropriate methods of detection of clusters is also further strengthened by the recent interest in surveillance for bioterrorism where clustering could be a vital clue to the existence of an attack. The study is aimed at 1) developing and evaluating singular information methods in multilevel semiparametric models for surface estimation of relative risk with sparse cancer data, 2) testing different distributional assumptions for random effects and 3) applying the methods to clusters detection in small area cancer studies. Multilevel semiparametric models are constructed to include multiple sets of random effects associated with nested partitions of the entire territory of interest that allow great flexibility for testing unusual rates within smaller parts of larger areas. Testing departures from the null value of no unusual rates is equivalent to testing the one or multiple variance components equal to zero and is approached as a singular information problem. Construction of confidence intervals is also studied. The random effects are assumed to follow a variety of different distributions, such as heavy-tailed, skewed and bimodal distributions. The expected result is a likelihood-based approach to fitting robust linear mixed models in a wider range of applications than was previously possible.
描述(由申请人提供): 当遇到罕见的癌症,如喉癌或儿童白血病时,通常有兴趣评估是否出现了病例聚集。通常,大面积的零发病率地区会被小规模的病例聚集所打断。需要能够检测某些癌症的集群,因为这些可以导致关于疾病的一般病因学和疾病的局部环境风险因素的重要信息。在癌症监测中,由于感知到与某些工业/商业过程或活动(例如废物处理、污水散布、杀虫剂散布、移动的通信广播)有关的居住环境风险,集群检测变得重要。关注的疾病结局类型从呼吸道癌症(如肺或喉)到儿童白血病、非霍奇金淋巴瘤和软组织肉瘤不等。最近对监测生物恐怖主义的兴趣也进一步加强了对探测集群的适当方法的需要,因为集群可能是确定是否存在攻击的重要线索。 本研究的目的是:1)开发和评估多水平半参数模型中的奇异信息方法,用于稀疏癌症数据的相对风险的表面估计,2)测试随机效应的不同分布假设,3)将该方法应用于小区域癌症研究中的聚类检测。 多水平半参数模型的构建,包括多组随机效应与嵌套分区的整个领土的利益,允许很大的灵活性,测试不寻常的利率在较小的部分较大的地区。检验偏离零值的无异常率等价于检验一个或多个方差分量等于零,并作为一个奇异信息问题。还研究了置信区间的构造。假设随机效应遵循各种不同的分布,例如重尾分布、偏态分布和双峰分布。预期的结果是一种基于可能性的方法,在比以前可能的更广泛的应用中拟合稳健的线性混合模型。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Testing for unusual aggregation of health risk in semiparametric models.
测试半参数模型中健康风险的异常聚合。
  • DOI:
    10.1002/sim.3126
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Bottai,Matteo;Geraci,Marco;Lawson,Andrew
  • 通讯作者:
    Lawson,Andrew
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MATTEO BOTTAI其他文献

MATTEO BOTTAI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MATTEO BOTTAI', 18)}}的其他基金

Singular Information for Cancer Cluster Detection
用于癌症簇检测的单一信息
  • 批准号:
    6889333
  • 财政年份:
    2004
  • 资助金额:
    $ 7.28万
  • 项目类别:

相似海外基金

FAIRClinical: FAIR-ification of Supplementary Data to Support Clinical Research
FAIRClinical:补充数据的 FAIR 化以支持临床研究
  • 批准号:
    EP/Y036395/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.28万
  • 项目类别:
    Research Grant
Optimizing integration of veterinary clinical research findings with human health systems to improve strategies for early detection and intervention
优化兽医临床研究结果与人类健康系统的整合,以改进早期检测和干预策略
  • 批准号:
    10764456
  • 财政年份:
    2023
  • 资助金额:
    $ 7.28万
  • 项目类别:
The IDeA State Consortium for a Clinical Research Resource Center: Increasing Clinical Trials in IDeA States through Communication of Opportunities, Effective Marketing, and WorkforceDevelopment
IDeA 州临床研究资源中心联盟:通过机会交流、有效营销和劳动力发展增加 IDeA 州的临床试验
  • 批准号:
    10715568
  • 财政年份:
    2023
  • 资助金额:
    $ 7.28万
  • 项目类别:
The Mayo Clinic NeuroNEXT Clinical Research Site
梅奥诊所 NeuroNEXT 临床研究网站
  • 批准号:
    10743328
  • 财政年份:
    2023
  • 资助金额:
    $ 7.28万
  • 项目类别:
Addressing Underperformance in Clinical Trial Enrollments: Development of a Clinical Trial Toolkit and Expansion of the Clinical Research Footprint
解决临床试验注册表现不佳的问题:开发临床试验工具包并扩大临床研究足迹
  • 批准号:
    10638813
  • 财政年份:
    2023
  • 资助金额:
    $ 7.28万
  • 项目类别:
The Minnesota TMD IMPACT Collaborative: Integrating Basic/Clinical Research Efforts and Training to Improve Clinical Care
明尼苏达州 TMD IMPACT 协作:整合基础/临床研究工作和培训以改善临床护理
  • 批准号:
    10828665
  • 财政年份:
    2023
  • 资助金额:
    $ 7.28万
  • 项目类别:
Improving Multicultural Engagement in Clinical Research through Partnership with Federally Qualified Health Centers and Community Health Worker Programs
通过与联邦合格的健康中心和社区卫生工作者计划合作,改善临床研究中的多元文化参与
  • 批准号:
    10823828
  • 财政年份:
    2023
  • 资助金额:
    $ 7.28万
  • 项目类别:
Promoting a Culture Of Innovation, Mentorship, Diversity and Opportunity in NCI Sponsored Clinical Research: NCI Research Specialist (Clinician Scientist) Award Application of Janice M. Mehnert, M.D.
在 NCI 资助的临床研究中促进创新、指导、多样性和机会文化:Janice M. Mehnert 医学博士的 NCI 研究专家(临床科学家)奖申请
  • 批准号:
    10721095
  • 财政年份:
    2023
  • 资助金额:
    $ 7.28万
  • 项目类别:
Clinical Research Center for REstoration of NEural-based Function in the Real World (RENEW)
现实世界神经功能恢复临床研究中心 (RENEW)
  • 批准号:
    10795328
  • 财政年份:
    2023
  • 资助金额:
    $ 7.28万
  • 项目类别:
Mentoring Scientists for Careers in HIV Translational Clinical Research
指导科学家从事艾滋病毒转化临床研究
  • 批准号:
    10762827
  • 财政年份:
    2023
  • 资助金额:
    $ 7.28万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了