Engineered Early Embryonic Cardiac Tissue (EEECT)
工程化早期胚胎心肌组织 (EEECT)
基本信息
- 批准号:6899543
- 负责人:
- 金额:$ 20.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-05-15 至 2007-03-31
- 项目状态:已结题
- 来源:
- 关键词:bioengineering /biomedical engineeringbiomaterial interface interactionbiomechanicsbiotechnologycardiac myocytescell differentiationcell proliferationchick embryocollagenconfocal scanning microscopycytoskeletal proteinsembryo /fetus tissue /cell culturehistogenesismechanical stressmechanoreceptorsmyocardiummyosinsthree dimensional imaging /topographytissue /cell culturetissue engineeringtissue support frametroponin
项目摘要
DESCRIPTION (provided by applicant): The purpose of this R21 proposal is to develop and validate a tissue engineering paradigm that uses cells isolated from the early staged embryonic chick heart to efficiently generate a 3-dimensional (3D) functioning myocardium termed "Engineered Early Embryonic Cardiac Tissue or EEECT". Developing embryos (fly, fish, frog, chicken, mouse, etc..) serve as unique experimental model systems for cardiovascular cell fate mapping, for gene discovery related to morphogenesis and malformations, for defining the physiology and biomechanics of morphogenesis. The cells destined to form the heart and blood vessels arise from several sources including the lateral splanchnic mesoderm, neural crest, anterior heart field, and proepicardial organ. These cells migrate, clonally proliferate, differentiate, and induce other cells along cardiovascular lineages in spatio-temporally defined morphometric patterns that are responsive to biomechanical and metabolic stresses. Cardiovascular tissue engineering has emerged as a field which is providing novel therapeutic options for the management of a wide range of diseases including structural heart disease and heart failure. Recently several research groups have succeeded in constructing Engineered Cardiac Tissues (ECTs). However, current technical barriers to the successful clinical implantation of ECTs include the limited proliferative capacity of ECTs, the logistical challenges of integrating ECTs into the highly organized multicellular and anisotropic contractile machinery of the mature myocardium, and the uncertain in-vivo "natural-history" of transplanted tissue engineered cells and tissues. Our laboratory has focused on developing novel approaches to investigate the in vivo and in vitro biomechanical regulation of the developing myocardium. We are now applying that expertise to develop a unique Engineered Early Embryonic Cardiac Tissue (EEECT) which will provide a robust in vitro model to continue our investigation of myocardial differentiation and adaptation to biomechanical load and also provide a potential in vitro source of engineered myocardium for cardiovascular repair. Our preliminary data with 3D culture of embryonic chick cardiac cells have provided a proof of principle that embryonic cardiomyocytes proliferate and differentiate in culture, respond to mechanical load, and develop contractile properties similar to native developing myocardium. We have focused on the use of embryonic cardiac cells due to their greater proliferative capacity versus neonatal and mature cells and their intrinsic ability to differentiate and adapt.
Specific Aim 1. Develop and functionally characterize 3D Engineered Early Embryonic Cardiac Tissue (EEECT).
Specific Aim 2. Define the impact of mechanical stress on the architecture and contractile function of EEECT. The significance of our proposal to develop EEECT from early embryonic myocardium is the unique opportunity to investigate cardiomyocyte differentiation and adaptation in a controlled biomechanical environment. Our long term goal is to evaluate EEECT as a novel biomaterial to repair the malformed or injured myocardium.
描述(由申请人提供):本R21提案的目的是开发和验证组织工程范例,该范例使用从早期胚胎鸡心脏中分离的细胞有效地生成三维(3D)功能心肌,称为“工程化早期胚胎心脏组织或EEECT”。发育中的胚胎(苍蝇、鱼、青蛙、鸡、老鼠等)是心血管细胞命运定位、形态发生和畸形相关基因发现、形态发生生理学和生物力学定义的独特实验模型系统。形成心脏和血管的细胞有几个来源,包括外侧内脏中胚层、神经嵴、心前野和心外膜前器官。这些细胞迁移,克隆增殖,分化,并诱导其他细胞沿着心血管谱系在时空定义的形态模式,响应生物力学和代谢应激。心血管组织工程已经成为一个领域,它为包括结构性心脏病和心力衰竭在内的广泛疾病的管理提供了新的治疗选择。最近几个研究小组已经成功地构建了工程心脏组织(ECTs)。然而,目前成功临床植入ECTs的技术障碍包括ECTs有限的增殖能力,将ECTs整合到成熟心肌高度组织的多细胞和各向异性收缩机制中的后勤挑战,以及移植的组织工程细胞和组织的体内“自然历史”的不确定性。我们的实验室一直致力于开发新的方法来研究体内和体外的生物力学调节的心肌发育。目前,我们正在利用这些专业知识开发一种独特的工程早期胚胎心脏组织(EEECT),这将为我们继续研究心肌分化和对生物力学负荷的适应提供一个强大的体外模型,也为心血管修复提供了一个潜在的工程心肌的体外来源。我们对胚胎鸡心肌细胞进行三维培养的初步数据证明了胚胎心肌细胞在培养中增殖和分化,对机械负荷作出反应,并发展出与天然发育心肌相似的收缩特性。由于胚胎心脏细胞比新生儿和成熟细胞具有更大的增殖能力,以及它们内在的分化和适应能力,我们一直关注胚胎心脏细胞的使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bradley Barth Keller其他文献
Bradley Barth Keller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bradley Barth Keller', 18)}}的其他基金
PELEX-C: A high-resolution, wireless ECG system for infants/children
PELEX-C:适用于婴儿/儿童的高分辨率无线心电图系统
- 批准号:
7540873 - 财政年份:2008
- 资助金额:
$ 20.83万 - 项目类别:
Magnetic Navigated Image Overlay for Vascular Access - MNIO-VA
用于血管通路的磁导航图像叠加 - MNIO-VA
- 批准号:
7393524 - 财政年份:2008
- 资助金额:
$ 20.83万 - 项目类别:
VisualSonics Vevo770 Ultrasound Biomicroscopy and Microinjection Core
VisualSonics Vevo770 超声生物显微镜和显微注射核心
- 批准号:
7388389 - 财政年份:2007
- 资助金额:
$ 20.83万 - 项目类别:
Engineered Early Embryonic Cardiac Tissue (EEECT)
工程化早期胚胎心肌组织 (EEECT)
- 批准号:
7061616 - 财政年份:2005
- 资助金额:
$ 20.83万 - 项目类别:














{{item.name}}会员




