Predictive inference for clinical trials with the parametric bootstrap

使用参数引导程序进行临床试验的预测推理

基本信息

  • 批准号:
    2565020
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

The development of cutting-edge medical treatments requires targeted statistical methods for the analysis of clinical trial data. In this arena, many questions of interest have a distinctively causal flavor. What is the expected effect of a new drug or vaccine on patient outcomes over time? How does that effect vary across different subgroups of the population? Can these conclusions be strengthened by incorporating observational or historical data? It is clear that 21st-century biomedical research necessitates thoughtful and original advancements in the area of causal inference.The general aim of this project is to develop the theory and practice of predictive inference within a Bayesian framework as a novel and unique approach to these questions. Given observed data from an unknown parametric sampling distribution, the standard Bayesian approach would be to elicit a prior density and likelihood function, then derive the posterior density. The predictive approach, however, notes that the statistical uncertainty in this posterior arises entirely from the fact that we can only observe a limited sample of data and are therefore missing observations. If we could observe infinite data, then any parameter of interest would be fully defined. An alternative method is therefore to directly model the predictive density and then impute further observations through a bootstrap resampling procedure, effectively transforming the statistical inference problem into a missing data problem. This predictive resampling viewpoint provides an interesting lens through which to view the analysis of clinical trials. In particular, the focus of a clinical trial is generally on how the treatment will affect patient outcomes. The predictive approach therefore addresses this question more directly by taking the actual future data points as the objects of inference, rather than working through a parameter which may be an artifical model construct.Bayesian predictive inference also provides a novel perspective on questions related to uncertainty quantification and hypothesis testing. A standard frequentist hypothesis test would likely attempt to derive a density function for some estimator, then use it to calculate confidence intervals and p-values. Instead, our approach again considers the concept of sampling the missing or unobserved data repeatedly in order to generate several complete datasets. Any hypothesis can then be evaluated with respect to the multiverse of "true parameters" arising from these datasets. The final result is a prior-free Bayesian alternative to traditional methods of hypothesis testing. Through our collaboration with Novo Nordisk, we will apply these methods to real-world clinical trial data, including treatments for heart disease and diabetes.This project falls under the "Statistics and applied probability" EPSRC research area, which involves "statistical methodology and development of new probabilistic techniques inspired by applications". It is co-funded by Novo Nordisk and supervised by Professor Chris Holmes, with additional collaboration from Professor Stephen Walker.
尖端医疗的发展需要有针对性的统计方法来分析临床试验数据。在这个竞技场中,许多令人感兴趣的问题都带有明显的因果性。随着时间的推移,新药或疫苗对患者结局的预期影响是什么?这种影响在不同的人群中有何不同?这些结论是否可以通过纳入观察数据或历史数据得到加强?很明显,21世纪的生物医学研究需要在因果推理领域取得深思熟虑和原创性的进展。本项目的总体目标是在贝叶斯框架内发展预测推理的理论和实践,作为解决这些问题的新颖而独特的方法。给定来自未知参数抽样分布的观测数据,标准的贝叶斯方法将导出先验密度和似然函数,然后导出后验密度。然而,预测方法指出,这种后验的统计不确定性完全来自这样一个事实,即我们只能观察到有限的数据样本,因此是缺失的观察。如果我们可以观察到无限的数据,那么任何感兴趣的参数都将被完全定义。因此,另一种方法是直接对预测密度进行建模,然后通过自助回归程序估算进一步的观察结果,有效地将统计推断问题转化为缺失数据问题。这种预测性的再分析观点提供了一个有趣的透镜,通过它来观察临床试验的分析。特别是,临床试验的重点通常是治疗将如何影响患者的结果。因此,预测方法更直接地解决了这个问题,将实际的未来数据点作为推理的对象,而不是通过一个参数,这可能是一个人工的模型construction.Bayesian预测推理也提供了一个新的视角,有关的问题不确定性量化和假设检验。标准的频率论假设检验可能会尝试为某个估计量导出一个密度函数,然后用它来计算置信区间和p值。相反,我们的方法再次考虑重复采样缺失或未观察到的数据的概念,以生成几个完整的数据集。然后,任何假设都可以根据这些数据集产生的“真实参数”的多元宇宙进行评估。最后的结果是一个先验自由贝叶斯替代传统的假设检验方法。通过与诺和诺德公司的合作,我们将把这些方法应用到实际的临床试验数据中,包括心脏病和糖尿病的治疗。该项目福尔斯EPSRC的“统计学和应用概率”研究领域,涉及“统计方法和受应用启发的新概率技术的开发”。它由诺和诺德公司共同资助,由Chris Holmes教授监督,并与Stephen步行者教授合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Poly-Matching Causal Inference for Assessing Multiple Acute Medical Managements of Pediatric Traumatic Brain Injuries
用于评估小儿创伤性脑损伤的多种急性医疗治疗的多重匹配因果推理
  • 批准号:
    10586785
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Leveraging Causal Inference and Machine Learning Methods to Advance Evidence-Based Maternal Care and Improve Newborn Health Outcomes
利用因果推理和机器学习方法推进循证孕产妇护理并改善新生儿健康结果
  • 批准号:
    10604856
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Genomic, gene-environment and casual inference studies in diabetic complications
糖尿病并发症的基因组、基因环境和随意推理研究
  • 批准号:
    10639507
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Scalable Computational Methods for Genealogical Inference: from species level to single cells
用于谱系推断的可扩展计算方法:从物种水平到单细胞
  • 批准号:
    10889303
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Inference by interference: Task-dependent pupil responses as an early detection method for Alzheimer's disease related brainstem functional change
干扰推理:任务依赖性瞳孔反应作为阿尔茨海默病相关脑干功能变化的早期检测方法
  • 批准号:
    10805667
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Learning-Enabled Autonomous Decision-Support for Blood Pressure Management in Hemorrhage Resuscitation via Population-Informed Statistical Inference
通过基于人群的统计推断,为出血复苏中的血压管理提供学习型自主决策支持
  • 批准号:
    10727737
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Bayesian machine learning for complex missing data and causal inference with a focus on cardiovascular and obesity studies
用于复杂缺失数据和因果推理的贝叶斯机器学习,重点关注心血管和肥胖研究
  • 批准号:
    10563598
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Investigation and deployment of novel Bayesian inference algorithms in CAVATICA for identifying genomic variants underlying congenital heart defects in Down syndrome individuals
在 CAVATICA 中研究和部署新型贝叶斯推理算法,用于识别唐氏综合症个体先天性心脏缺陷的基因组变异
  • 批准号:
    10658217
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Applying causal inference methods to improve estimation of the real-world benefits and harms of lung cancer screening
应用因果推理方法来改进对肺癌筛查的现实益处和危害的估计
  • 批准号:
    10737187
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Applying Causal Inference and Deep Learning to Improve the Accuracy and Equity of Pulmonary Function Test Interpretation.
应用因果推理和深度学习提高肺功能测试解释的准确性和公平性。
  • 批准号:
    10749527
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了