Uncertainty Quantification Methods for new Discretisation methods for Exascale computer models in Climate Sciences

气候科学中百亿亿次计算机模型的新离散化方法的不确定性量化方法

基本信息

  • 批准号:
    2575368
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

The next few years will bring about the advent of Exascale computing. That is 10 to the 18 calculations per second for the most powerful supercomputers. To harness this increased computing power, new approaches for implementing large scale models are required. This is particularly true regarding the discretisation of climate models as traditional methods often suffer from points being too close to each other due to the convergence of the meridians at the poles. Alternative methods have been proposed with leading ideas from the LFRic project (Adams, 2019) in partnership with the Met Office, and from Girolami (2021) at the University of Cambridge. LFRic proposes the use of a cubed-sphere mesh, while Girolami has worked extensively on statistical finite element methods. Statistical finite element methods provide a physics-based approach to solving differential equations that allow for small changes in the physical dynamics of problem, given sufficient evidence in the data. This helps to account for potentially unsuitable modelling assumptions, material defects and varying geometries in the system in question. I am interested in researching these implementations, and other approaches, to ascertain how best to quantify uncertainty regarding systems of interest in climate models. This could include modelling the effects of ice melting at the polar ice caps on ocean circulation, or on modelling the evolution and likelihoods of extreme weather events. The research could also include how best to account for such events given different discretisation schemes. Finally, combing the discretisation approaches into a single multiphysics model, by developing methods similar to those described by Ming and Guillas (2021), in order to perform uncertainty quantification on large scale climate models would be ultimate goal of the PhD.This research would be useful to the Met Office and other forecasting institutions for local weather forecasts, particularly in areas where extreme weather events are more prevalent. This may help influence decisions such as whether a city should be evacuated to prevent large scale loss of human life during a hurricane/typhoon. This research may also reduce uncertainty in climate models that look to predict the effects of climate change within the next 100 years.My academic background is mostly in statistical inference and some scientific computing including C++. I am currently taking a module in Uncertainty Quantification however this is a rapidly growing field and I have much more to learn. Similarly, I may need further training in PDEs and/or climate sciences as I have little experience in these fields, only a passion to learn.
未来几年将带来Exascale计算的出现。对于最强大的超级计算机来说,这是每秒10的18次方次计算。为了利用这种增加的计算能力,需要用于实现大规模模型的新方法。对于气候模型的离散化,这一点尤其如此,因为传统方法往往由于子午线在两极的收敛而受到点彼此太近的影响。替代方法已经提出了与气象局合作的LFRic项目(亚当斯,2019)和剑桥大学的Girolami(2021)的领先思想。LFRic建议使用立方体球网格,而Girolami则广泛研究统计有限元方法。统计有限元方法提供了一种基于物理的方法来求解微分方程,该方法允许问题的物理动力学发生微小变化,并在数据中提供足够的证据。这有助于解释潜在的不合适的建模假设、材料缺陷和所讨论的系统中的不同几何形状。我有兴趣研究这些实现和其他方法,以确定如何最好地量化气候模型中感兴趣的系统的不确定性。这可能包括模拟极地冰盖的冰融化对海洋环流的影响,或模拟极端天气事件的演变和可能性。该研究还可能包括如何最好地考虑到不同离散化方案的此类事件。最后,通过开发类似于Ming和Guillas(2021)所描述的方法,将离散化方法结合到一个单一的多物理场模型中,以便对大尺度气候模型进行不确定性量化,这将是博士的最终目标。特别是在极端天气事件较为普遍的地区。这可能有助于影响决策,例如是否应该疏散城市,以防止飓风/台风期间大规模的人员伤亡。这项研究还可以减少气候模型的不确定性,这些模型旨在预测未来100年内气候变化的影响。我的学术背景主要是统计推断和一些科学计算,包括C++。我目前正在学习不确定性量化模块,但这是一个快速发展的领域,我还有很多东西要学。同样,我可能需要进一步培训偏微分方程和/或气候科学,因为我在这些领域的经验很少,只有学习的热情。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

相似海外基金

Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
  • 批准号:
    2343135
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Uncertainty quantification methods applied to wind energy systems
应用于风能系统的不确定性量化方法
  • 批准号:
    RGPIN-2020-04511
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Uncertainty Analysis of Greenhouse Gas (GHG) Quantification Methods used by the Land-Use, Land-Use Change, and Forestry Sector: a Comparison between Canada and Sweden.
土地利用、土地利用变化和林业部门使用的温室气体 (GHG) 量化方法的不确定性分析:加拿大和瑞典之间的比较。
  • 批准号:
    576436-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Canadian Graduate Scholarships Foreign Study Supplements
Bayesian Methods For Climate Impact Uncertainty Quantification (Ref: 4386)
气候影响不确定性量化的贝叶斯方法(参考:4386)
  • 批准号:
    2697050
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Uncertainty Analysis of Greenhouse Gas Quantification Methods used by Small and Medium Sized Emitters in Ontario
安大略省中小型排放者使用的温室气体量化方法的不确定性分析
  • 批准号:
    575858-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Uncertainty quantification methods applied to wind energy systems
应用于风能系统的不确定性量化方法
  • 批准号:
    RGPIN-2020-04511
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
  • 批准号:
    2107934
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Inference and Uncertainty Quantification for High Dimensional Systems in Remote Sensing: Methods, Computation, and Applications
合作研究:遥感高维系统的推理和不确定性量化:方法、计算和应用
  • 批准号:
    2053746
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Inference and Uncertainty Quantification for High Dimensional Systems in Remote Sensing: Methods, Computation, and Applications
合作研究:遥感高维系统的推理和不确定性量化:方法、计算和应用
  • 批准号:
    2053668
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Adaptive multilevel stochastic collocation methods for uncertainty quantification
不确定性量化的自适应多级随机配置方法
  • 批准号:
    EP/W010925/1
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了