Modern causal methods to estimate the impact of Individual and Group Health Policies using routinely collected data
使用常规收集的数据评估个人和团体健康政策影响的现代因果方法
基本信息
- 批准号:2585221
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Policy makers are interested in evaluating the causal effects and cost-effectiveness of health and care policies introduced in primary or secondary health or social care settings (GP practices, hospitals or residential/nursing homes). Such policies are often introduced without having first conducted a randomised study and therefore policy evaluation usually relies on retrospective observational data, usually routinely collected, such as electronic health records (EHRs) from GP practices and hospital trusts. There are several challenges in using EHR data for policy evaluation, which need to be addressed to enable unbiased estimates of policy impacts. A key challenge is to account for the fact that those exposed to the policy may systematically differ from those unexposed in multiple respects. Variables simultaneously associated with the outcome of interest and the exposure are known as confounders. Failure to adjust for confounding can lead to substantial bias in estimates of policy effects. Other sources of bias when using EHRs stem from inaccurately defining the study populations, interventions of interest and time origins. The specific nature of the data also brings additional challenges: the large volume of data, often inconsistently recorded, increases the complexity of identifying confounders and effect moderators. In high-dimensional settings (i.e. with many covariates), modelling complex confounding patterns correctly, especially given their often time-dependent nature, is difficult. Misspecification of the relationships between an outcome, the exposure and identified confounders is also a serious concern, because causal inference inevitably requires out-of-sample extrapolation; misspecification may result in misleading conclusions that are difficult to diagnose.In recent years, the field of 'causal inference' has provided concepts, tools and statistical analysis methods that facilitate estimation of causal effects from observational data. However, there remain a number of gaps in the toolkit. One such gap is that the literature has focused primarily on individuallevel interventions, rather than policy interventions at a group level. Furthermore, extensions of methods to accommodate the particular complexities of EHR data have only more recently started to emerge and have not yet come into wide use. The proposed project is a collaboration between the LSHTM Department of Medical Statistics, and the Improvement Analytics Unit (IAU) hosted at The Health Foundation (THF). The IAU is a partnership between THF and NHS England and NHS Improvement, created to evaluate complex health care policies implemented at local to national level to support decision making as well as inform national policy. The IAU uses novel patient-level linked datasets, which include information on secondary care use, mortality, as well as socio-demographic information, where appropriate linked with data from primary care, social or community care, or other local services. The unit's work programme varies over time, but at present focusses on (1) the impact of Digital First Primary Care models on general practice and subsequent hospital use, (2) the long term impact of integrated care initiatives on secondary care outcomes, and (3) the impact of the COVID Oximetry at home programme on clinical effectiveness and COVID-19 mortality. The proposed PhD project will develop causal inference methodology for group-level policy interventions using EHR data, and apply this to evaluate the policy impact of these 3 projects. The resulting policy evaluation estimates will be more reliable in terms of acknowledging the groupstructure, accounting for high number of confounders and model uncertainty. The methods developed in this proposed research will equip future analysts with better tools for evidence based policy evaluation that will better support policy-makers and health services managers in their quest to deliver better-value high-quality care.
决策者有兴趣评估在初级或二级卫生或社会护理环境(全科医生的做法,医院或住宅/疗养院)中引入的卫生和护理政策的因果影响和成本效益。这些政策通常在没有首先进行随机研究的情况下引入,因此政策评估通常依赖于通常定期收集的回顾性观察数据,例如来自GP实践和医院信托的电子健康记录(EHR)。在使用EHR数据进行政策评估方面存在一些挑战,需要解决这些挑战,以便对政策影响进行无偏见的估计。一个关键的挑战是要考虑到这样一个事实,即那些受到政策影响的人可能在多个方面与那些没有受到政策影响的人有系统的不同。同时与关注结果和暴露相关的变量称为混杂因素。如果不对混杂因素进行调整,可能会导致对政策效果的估计出现重大偏差。使用EHR时的其他偏倚来源源于对研究人群、感兴趣的干预措施和时间来源的不准确定义。数据的特殊性质也带来了额外的挑战:大量的数据,往往不一致的记录,增加了识别混杂因素和影响调节因素的复杂性。在高维环境中(即具有许多协变量),正确建模复杂的混杂模式是困难的,特别是考虑到它们通常具有时间依赖性。结果、暴露和确定的混杂因素之间的关系的错误描述也是一个严重的问题,因为因果推断不可避免地需要样本外推;错误描述可能导致难以诊断的误导性结论。近年来,“因果推断”领域提供了概念、工具和统计分析方法,有助于从观察数据中估计因果效应。然而,工具包中仍有一些空白。其中一个差距是,文献主要侧重于个人层面的干预,而不是群体层面的政策干预。此外,扩展的方法,以适应EHR数据的特殊复杂性,只是最近才开始出现,尚未得到广泛使用。拟议的项目是LSHTM医疗统计部门与健康基金会(THF)托管的改进分析单位(IAU)之间的合作。IAU是THF和NHS England和NHS Improvement之间的合作伙伴关系,旨在评估在地方到国家一级实施的复杂医疗保健政策,以支持决策并为国家政策提供信息。IAU使用新的患者级关联数据集,其中包括二级护理使用信息,死亡率以及社会人口统计信息,并在适当情况下与初级保健,社会或社区护理或其他当地服务的数据相关联。该部门的工作计划随着时间的推移而变化,但目前的重点是(1)数字第一初级保健模式对全科实践和随后的医院使用的影响,(2)综合护理计划对二级护理结果的长期影响,以及(3)COVID血氧定量在家计划对临床有效性和COVID-19死亡率的影响。拟议的博士项目将使用EHR数据开发群体层面政策干预的因果推理方法,并将其应用于评估这3个项目的政策影响。由此产生的政策评估估计将更可靠的承认群体结构,占大量的混杂因素和模型的不确定性。在这项拟议的研究中开发的方法将为未来的分析师提供更好的工具,以证据为基础的政策评估,这将更好地支持政策制定者和卫生服务管理人员在寻求提供更有价值的高质量的护理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
使用倾向分(Propensity Score)和主分层(Principal Stratification)进行因果推断
- 批准号:10401003
- 批准年份:2004
- 资助金额:11.0 万元
- 项目类别:青年科学基金项目
相似海外基金
MPhil/PhD Statistics (Assessing inequality in the Criminal Justice System using novel causal inference methods and Bayesian spatial models)
硕士/博士统计学(使用新颖的因果推理方法和贝叶斯空间模型评估刑事司法系统中的不平等)
- 批准号:
2905812 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Whole genome sequence interpretation for lipids to discover new genes and mechanisms for coronary artery disease
脂质的全基因组序列解释,以发现冠状动脉疾病的新基因和机制
- 批准号:
10722515 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Genome Editing Therapy for Usher Syndrome Type 3
针对 3 型亚瑟综合症的基因组编辑疗法
- 批准号:
10759804 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Next-Generation Algorithms in Statistical Genetics Based on Modern Machine Learning
基于现代机器学习的下一代统计遗传学算法
- 批准号:
10714930 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Mapping the Neurobiological Risks and Consequences of Alcohol Use in Adolescence and Across the Lifespan
绘制青春期和整个生命周期饮酒的神经生物学风险和后果
- 批准号:
10733406 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Poly-Matching Causal Inference for Assessing Multiple Acute Medical Managements of Pediatric Traumatic Brain Injuries
用于评估小儿创伤性脑损伤的多种急性医疗治疗的多重匹配因果推理
- 批准号:
10586785 - 财政年份:2023
- 资助金额:
-- - 项目类别:
From genotype to phenotype in a GWAS locus: the role of REST in atherosclerosis
GWAS 位点从基因型到表型:REST 在动脉粥样硬化中的作用
- 批准号:
10570469 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
-- - 项目类别: