Improving Diagnostics And Treatment of Female Reproductive Health Conditions

改善女性生殖健康状况的诊断和治疗

基本信息

  • 批准号:
    2589749
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Female reproductive problems are common, and in some cases can drastically decrease a woman's quality of life. Some of the most common reproductive health concerns are Endometriosis, Polycystic Ovarian Syndrome (PCOS), and Uterine Fibroids [1]. It is estimated that roughly 1 in 10 women have Endometriosis, and that 1 in 10 women have PCOS. Endometriosis and PCOS can co-occur, but also may occur distinctly. Since it is estimated that 10% of women of reproductive age may suffer from either of these conditions, it can be approximated that roughly 176 million women worldwide may suffer from each [2][3]. Uterine Fibroids are even more prevalent, with an estimated 1 in 3 women developing fibroids at some point in their life [4] Sometimes these conditions can cause minor or no symptoms, but in other situations female health conditions can cause major symptoms such as severe pain, infertility, and can even affect other organs [5]. With such common conditions, and such severe symptoms, one would expect there to be a large amount of research in this area. This does not appear to be the case. There is not a massive amount of knowledge in the medical domain on female reproductive conditions and why they occur. There is a particular lack of research on these conditions within the Computer Science field, with most papers focussing almost purely on machine learning methods. This is not the approach I wish to take, and therefore the research I propose seems to be rather novel. Reproductive issues can be particularly difficult to diagnose, with some conditions taking years to receive a definitive diagnosis. It is particularly alarming that for Endometriosis, the average time from onset of symptoms to diagnosis is 7.5 years [6]. There are several reasons why diagnosis for female health conditions can be lengthy, particularly that they tend to manifest themselves as a number of possible other potential medical problems [7]. In addition to this, I believe that there is an unexplored opportunity to use computational techniques and applications to aid the medical field in providing quicker diagnostic outcomes. Having conducted some background research on the applications of Computer Science in this area, I did not find much patient-centric work, that is, research which is directly focused on improving the wellbeing of the patients who are suffering from, or potentially suffering from, one of these conditions. For this reason, I would like to propose that I aim to research ways that Computer Science can be used to aid in the diagnosis and/or treatment of patients with suspected or confirmed reproductive health issues. My initial ideas involve potentially building a mobile application which allows women to track symptoms they are experiencing, for quicker diagnostic outcomes, or perhaps working with the formal clinical pathways of different female reproductive health conditions and discovering the best methods of treatment for a patient. Some Machine Learning will be complementary to my solution; however, it will not be the entirety of it. Data Mining may be used to extract useful information from medical text, and Constraint Programming may be useful in solving the combinatorial problems which will internally exist while trying to probabilistically determine the likelihood that a woman has any of these conditions. This approach would theoretically be transferrable to other medical areas, with the underlying techniques being able to aid the diagnosis process of many medical conditions, not just those relating to female health. A paper which takes a similar approach is `Balancing Prescriptions with Constraint Solvers' by Bowles and Caminati [8]. The paper explores an automated method to finding a course of treatment, using constraint solvers and theorem provers. Though focusing on different underlying health conditions, this paper may prove valuable when evaluating possible implementation routes.
女性生殖问题很常见,在某些情况下会大大降低女性的生活质量。一些最常见的生殖健康问题是子宫内膜异位症,多囊卵巢综合征(PCOS)和子宫肌瘤[1]。据估计,大约十分之一的女性患有子宫内膜异位症,十分之一的女性患有PCOS。子宫内膜异位症和PCOS可以同时发生,也可以单独发生。由于估计有10%的育龄妇女可能患有这两种疾病,因此可以估计全世界约有1.76亿妇女可能患有每种疾病[2][3]。子宫肌瘤甚至更普遍,估计有1/3的女性在生命中的某个时候发展为肌瘤[4]有时这些疾病会导致轻微或没有症状,但在其他情况下,女性健康状况会导致主要症状,如剧烈疼痛,不孕症,甚至会影响其他器官[5]。有了这些常见的条件,以及如此严重的症状,人们会期望在这一领域进行大量的研究。看来情况并非如此。在医学领域,关于女性生殖条件及其发生原因的知识并不多。在计算机科学领域,对这些条件的研究特别缺乏,大多数论文几乎完全集中在机器学习方法上。这不是我想采取的方法,因此我提出的研究似乎是相当新颖的。生殖问题可能特别难以诊断,有些情况需要数年才能得到明确的诊断。特别令人担忧的是,对于子宫内膜异位症,从症状发作到诊断的平均时间为7.5年[6]。有几个原因为什么女性健康状况的诊断可能是漫长的,特别是它们往往表现为一些其他可能的潜在医疗问题[7]。除此之外,我相信有一个未开发的机会,使用计算技术和应用程序来帮助医疗领域提供更快的诊断结果。在对计算机科学在这一领域的应用进行了一些背景研究后,我没有发现太多以患者为中心的工作,也就是说,直接关注改善患有或可能患有这些疾病的患者的健康的研究。出于这个原因,我想建议我的目标是研究计算机科学可以用来帮助诊断和/或治疗疑似或确诊生殖健康问题的患者的方法。我最初的想法包括可能建立一个移动的应用程序,使妇女能够跟踪她们正在经历的症状,以获得更快的诊断结果,或者可能与不同女性生殖健康状况的正式临床途径合作,并为患者发现最佳治疗方法。一些机器学习将补充我的解决方案;然而,它不会是它的全部。数据挖掘可以用来从医学文本中提取有用的信息,约束编程可以用于解决内部存在的组合问题,同时试图概率地确定一个女人有任何这些条件的可能性。这种方法理论上可以转移到其他医疗领域,其基本技术能够帮助诊断许多医疗状况,而不仅仅是与女性健康有关的疾病。Bowles和Caminati [8]的论文《Balancing Prescriptions with Constraint Solvers》采用了类似的方法。本文探讨了一种自动化的方法来找到一个疗程,使用约束求解器和定理证明。虽然侧重于不同的基本健康状况,本文可能证明有价值的评估可能的实施路线。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

PFI-RP: Precision diagnostics for personalized cancer care: development of new drugs and selection of treatment
PFI-RP:个性化癌症护理的精准诊断:新药开发和治疗选择
  • 批准号:
    2234456
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Quantum technology enabled blood diagnostics for safer and more patient centric cancer care & treatment management
量子技术使血液诊断成为可能,从而实现更安全、更以患者为中心的癌症护理
  • 批准号:
    10075392
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
  • 批准号:
    10625442
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
  • 批准号:
    10421222
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Fighting Infection and AMR in broiler farming: AI, omics and smart sensing for diagnostics, treatment selection and gut microbiome improvement
肉鸡养殖中抗击感染和抗菌素耐药性:用于诊断、治疗选择和肠道微生物组改善的人工智能、组学和智能传感
  • 批准号:
    BB/W020424/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
SBIR Phase I: Development of point-of-care diagnostics to direct the appropriate use of antibiotics for the treatment of high-risk urinary tract infections
SBIR 第一阶段:开发即时诊断,指导正确使用抗生素治疗高危尿路感染
  • 批准号:
    2014629
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
An Analysis of the Factors Impacting the Delay in Diagnostics and Treatment of Tuberculosis
影响结核病诊治延误的因素分析
  • 批准号:
    429138
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Studentship Programs
Quantifiable stool-based TB PCR to Improve Diagnostics and Treatment Monitoring
基于粪便的可量化结核病 PCR 改善诊断和治疗监测
  • 批准号:
    10208666
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Quantifiable stool-based TB PCR to Improve Diagnostics and Treatment Monitoring
基于粪便的可量化结核病 PCR 改善诊断和治疗监测
  • 批准号:
    10437815
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Nucleophosmin Centered Diagnostics and Treatment of Ischemic Acute Kidney Injury
以核磷蛋白为中心的缺血性急性肾损伤的诊断和治疗
  • 批准号:
    10171840
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了