Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
基本信息
- 批准号:10421222
- 负责人:
- 金额:$ 76.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AreaAstrocytomaAtlasesBrain NeoplasmsCharacteristicsClinicalClinical TrialsCommunitiesComplexComputer softwareDataData SetDatabasesDecision MakingDiffusionExcisionFoundationsGenomicsGlioblastomaGliomaGoalsGuidelinesHeterogeneityImageImage AnalysisInfiltrationInstitutionInternationalLaboratoriesLifeMGMT geneMachine LearningMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of brainMeasuresMetabolicMethodsMethylationMolecularOutcomePatientsPatternPerfusionPhasePhenotypePhysiologicalPrognosisProgression-Free SurvivalsProgressive DiseasePropertyProtocols documentationRadiationRadiology SpecialtyRecurrenceReproducibilityResearchResearch PersonnelScanningShapesSignal TransductionSiteStratificationTestingTextureTissuesTrainingUpdatebasebiophysical modelcancer imagingclinical practiceclinical trial enrollmentdata resourcedeep learningdisease heterogeneityheterogenous dataimaging modalityimproved outcomein vivo evaluationlearning strategymachine learning methodmachine learning modelmutantneuro-oncologyopen sourcepersonalized diagnosticspersonalized medicinepersonalized predictionsphase II trialphenomicspredict clinical outcomepredictive modelingprogramspromoterquantitative imagingradiomicstooltreatment effecttreatment planningtreatment strategytreatment stratificationtreatment trialtumortumor growth
项目摘要
Abstract
The current state of magnetic resonance imaging (MRI) methods in neurooncology offers great
potential for providing rich characterizations of structural, physiological, and metabolic character-
istics of brain tumors, especially gliomas, which are complex and highly heterogeneous cancers.
Glioblastoma (GBM), in particular, has a grim prognosis, with median overall survival (OS) less than
15 months with relatively little improvement in the past 15 years since the Stupp protocol was
introduced. Many experimental treatments are being pursued; however, OS has largely remained
stagnant. Some of the obstacles in improving this outcome have been 1) disease heterogeneity,
which both renders it difficult to detect treatment effects in Phase 1 or even Phase 2 trials, and calls
for personalized, rather than one-size fits-all, treatment strategies; 2) methods used for tumor
characterization based on size, enhancement, perfusion and diffusion properties are relatively
crude and don't fully leverage the richness of imaging data or their spatial heterogeneity. Quanti-
tative imaging and machine learning (QIML) methods developed in the past decade have shown
great potential for dissecting the spatial, temporal and inter-patient heterogeneity of GBM; for
discoveringrelationships between imaging and molecular characteristics ; foroffering personalized
predictions of clinical outcome; and for leveraging subtle multi-parametric relationships in the data
to detect peri-tumoral infiltration or distinguish treatment related changes, i.e., pseudo-progression
(PsP), from true tumor recurrence. Our group has been at the forefront of QIML, with emphasis on
a) obtaining rich imaging phenotypes relying on multi-parametric signals, texture parameters, shape
properties, spatial patterns derived from atlas registration, and biophysical models of tumor growth,
and b) integrating such imaging signatures using machine learning into predictors of clinical
outcome, early recurrence from peri-tumoral infiltration, PsP, and radiologic subtypes of GBM.
Despite their promise, QIML methods have a notorious limitation: they might overfit specific
datasets from which they are derived, and might display poor reproducibility under real-life
conditions of variable scanner types and imaging protocols. In this proposal we aim to leverage the
recently formed ReSPOND (Radiomics Signatures for PrecisiON Diagnostics) consortium, to
integrate, harmonize, and analyze 4,578 datasets from 14 centers around the world, and hence
more appropriately train and cross-validate QIML tools for a wider generalizability. This consortium
will generate an unprecedented database of diverse and carefully harmonized sets of MRI and
clinical measures, and aims to provide the community with robust and reproducible QIML models
contributing to precision diagnostics and personalize treatment for this dreaded brain cancer.
抽象的
神经学中磁共振成像(MRI)方法的当前状态提供了很好的
提供结构,生理和代谢特征的丰富特征的潜力
脑肿瘤,尤其是神经胶质瘤的疾病,它们是复杂且高度异质性癌症的。
尤其是胶质母细胞瘤(GBM)具有严峻的预后,中位总生存率(OS)小于
自Stupp协议的过去15年中,15个月的改善相对较小
引入。正在追求许多实验治疗;但是,操作系统在很大程度上仍然存在
停滞。改善这一结果的一些障碍是1)疾病异质性,
这两者都使在第1阶段甚至第2阶段试验中都难以检测治疗效果,并调用
用于个性化而不是一定程度的治疗策略; 2)用于肿瘤的方法
根据大小,增强,灌注和扩散特性的表征相对
粗糙,不要充分利用成像数据或空间异质性的丰富性。量化
过去十年中开发的表面成像和机器学习(QIML)方法
剖析GBM的空间,时间和患者间异质性的巨大潜力;为了
在成像和分子特征之间发现培养;有助于个性化
临床结果的预测;并利用数据中的微妙多参数关系
检测肿瘤周日浸润或区分相关的变化,即伪造
(PSP),来自真正的肿瘤复发。我们的小组一直处于QIML的最前沿,重点是
a)获得依赖多参数信号,纹理参数,形状的丰富成像表型
特性,源自ATLAS登记的空间模式以及肿瘤生长的生物物理模型,
b)使用机器学习到临床预测指标
结果,肿瘤周围浸润,PSP和放射线亚型的早期复发。
尽管他们承诺,QIML方法仍有臭名昭著的限制:它们可能过于特定
它们从中得出的数据集,在现实生活中可能表现出差的可重复性
可变扫描仪类型和成像协议的条件。在此提案中,我们旨在利用
最近形成的响应(精确诊断的放射学特征)联盟,
整合,协调和分析来自全球14个中心的4,578个数据集,因此
更适当地训练和交叉验证的QIML工具,以提供更广泛的概括性。这个财团
将生成一个前所未有的数据库,包括多种多样的MRI集合集和
临床措施,旨在为社区提供强大而可重复的QIML模型
有助于精确诊断并个性化这种可怕的脑癌治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christos Davatzikos其他文献
Christos Davatzikos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christos Davatzikos', 18)}}的其他基金
Disentangling the anatomical, functional and clinical heterogeneity of major depression, using machine learning methods
使用机器学习方法解开重度抑郁症的解剖学、功能和临床异质性
- 批准号:
10714834 - 财政年份:2023
- 资助金额:
$ 76.45万 - 项目类别:
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
- 批准号:
10625442 - 财政年份:2022
- 资助金额:
$ 76.45万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10696100 - 财政年份:2020
- 资助金额:
$ 76.45万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10263220 - 财政年份:2020
- 资助金额:
$ 76.45万 - 项目类别:
Benchmarking and Comparing AD-Related AI Methods Across Sites on a Standardized Dataset
在标准化数据集上跨站点对 AD 相关 AI 方法进行基准测试和比较
- 批准号:
10825403 - 财政年份:2020
- 资助金额:
$ 76.45万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10475286 - 财政年份:2020
- 资助金额:
$ 76.45万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10028746 - 财政年份:2020
- 资助金额:
$ 76.45万 - 项目类别:
Machine Learning and Large-scale Imaging analytics for dimensional representations of brain trajectories in aging and preclinical Alzheimer's Disease: The brain aging chart and the iSTAGING consortium
机器学习和大规模成像分析,用于衰老和临床前阿尔茨海默氏病大脑轨迹的维度表示:大脑衰老图表和 iSTAGING 联盟
- 批准号:
10839623 - 财政年份:2017
- 资助金额:
$ 76.45万 - 项目类别:
Biomedical Image Computing and Informatics Cluster
生物医学图像计算与信息学集群
- 批准号:
9273767 - 财政年份:2017
- 资助金额:
$ 76.45万 - 项目类别:
相似国自然基金
A2反应性星形胶质细胞通过旁分泌IL-6抑制胶质瘤细胞铁死亡促替莫唑胺治疗抵抗的机制研究
- 批准号:82303829
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
星形胶质细胞通过mTORC1-S6K1-RBM20轴激活脂肪酸合成代谢促进胶质瘤恶性进展的机制研究
- 批准号:82303638
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
放疗诱导产生的衰老星形胶质细胞通过SASP塑造胶质瘤抑制性免疫微环境参与肿瘤复发的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
放疗诱导产生的衰老星形胶质细胞通过SASP塑造胶质瘤抑制性免疫微环境参与肿瘤复发的机制研究
- 批准号:82203035
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
星形胶质细胞样起源的肿瘤细胞对SHH亚型髓母细胞瘤复发的作用机理研究
- 批准号:82203832
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
- 批准号:
10625442 - 财政年份:2022
- 资助金额:
$ 76.45万 - 项目类别:
Genome-wide Sequencing to Identify the Genes Responsible for Enchondromatoses and Related Malignant Tumors
全基因组测序以确定导致软骨瘤病和相关恶性肿瘤的基因
- 批准号:
10302664 - 财政年份:2021
- 资助金额:
$ 76.45万 - 项目类别:
Genome-wide Sequencing to Identify the Genes Responsible for Enchondromatoses and Related Malignant Tumors
全基因组测序以确定导致软骨瘤病和相关恶性肿瘤的基因
- 批准号:
10447729 - 财政年份:2021
- 资助金额:
$ 76.45万 - 项目类别:
Molecular and Therapeutic Basis of Morphometric Aberrations in Brain Tumors
脑肿瘤形态畸变的分子和治疗基础
- 批准号:
9059039 - 财政年份:2015
- 资助金额:
$ 76.45万 - 项目类别: