Optimized IMRT Incorporating Beam Delivery

优化的 IMRT 结合射束传输

基本信息

项目摘要

DESCRIPTION (provided by applicant): Intensity Modulated Radiation Therapy (IMRT) seeks to deliver highly conformal tumorcidal doses to selected target volumes while conformably avoiding nearby normal tissues and critical structures. IMRT assumes that the optimized planned doses can be precisely and accurately delivered to the patient and that the final plan is optimal relative to the desired treatment objectives. Yet, current IMRT planning systems use simplified fast dose calculations during plan optimization and divides optimization and plan delivery into separate processes. The simplified dose computations can result in dose prediction errors (DPEs), which are differences between actual and computed doses, of 10% or more, while optimization with algorithms that have DPEs and the transformation from optimized to deliverable parameter spaces lead to optimization convergence errors (OCEs). OCEs prevent the true optimal plan from being found and can result in critical structure doses that are as much as 20% greater than necessary. Since dose differences of 3%-5% can produce clinically detectable changes in response, DPEs and OCEs may significantly impact clinical outcome. The goals of this project are: (1) To develop accurate IMRT dose-calculation methods that reduce DPEs to clinically insignificant levels. Monte Carlo (MC) methods will be used to evaluate the sources and clinical impacts of DPEs caused by patient heterogeneities, incident fluence prediction, and patient set-up errors and to identify and develop methods to reduce IMRT dose-calculation errors to less than 2% for all patient cases. (2) To develop optimization processes that reduces OCEs to clinically insignificant levels. This will be achieved by incorporating algorithms, identified in goal 1, that accurately model radiation transport through the multi-leaf collimator and the patient into the IMRT optimization process. Such deliverable optimization will allow each intensity-modulated beam to partially compensate for the limitations of other beams and may result in significantly reduced doses to critical Istructures for the same planning target volume dose. (3) To improve the computational efficiency of accurate Ideliverable-optimization processes developed in goal 2 to make them clinically practical without compromising plan laccuracy or optimality. This will allow accurate, deliverable optimized plans to be used for routine clinical IMRT, Iwhere previously it was not practical due to the excessive calculation time required. The long-term objectives of' this project are to develop rapid, accurate IMRT dose calculation and optimization} methods that result in minimal dose prediction and optimization convergence errors, to use these more accurate IRMT to accumulate more reliable dose-response data, and to improve patient outcomes through more conformal.
描述(由申请人提供):调强放射治疗(IMRT)旨在向选定的靶体积提供高度适形的肿瘤杀伤剂量,同时避免邻近的正常组织和关键结构。IMRT假定最佳计划剂量可以精确无误地交付给患者,并且最终计划相对于期望的治疗目标是最佳的。然而,目前的IMRT计划系统在计划优化期间使用简化的快速剂量计算,并将优化和计划交付划分为单独的过程。简化的剂量计算可能导致剂量预测误差(dpe),即实际剂量与计算剂量之间的差异为10%或更多,而使用具有dpe的算法进行优化以及从优化参数空间到可交付参数空间的转换会导致优化收敛误差(OCEs)。oce会妨碍找到真正的最佳方案,并可能导致临界结构剂量比必要剂量高出20%。由于3%-5%的剂量差异可产生临床可检测的反应变化,DPEs和OCEs可能显著影响临床结果。该项目的目标是:(1)开发准确的IMRT剂量计算方法,将dpe降低到临床不显著的水平。蒙特卡罗(MC)方法将用于评估由患者异质性、事件影响预测和患者设置错误引起的dpe的来源和临床影响,并确定和开发方法,将所有患者的IMRT剂量计算误差减少到2%以下。(2)制定优化流程,将oes降低到临床不显著的水平。这将通过将目标1中确定的算法整合到IMRT优化过程中来实现,该算法可以准确地模拟通过多叶准直器和患者的辐射传输。这种可交付的优化将允许每个调强光束部分补偿其他光束的局限性,并可能导致在相同的计划目标体积剂量下显著减少对关键结构的剂量。(3)提高目标2中开发的精确的理想交付优化流程的计算效率,使其在不影响计划准确性或最优性的情况下具有临床实用性。这将允许精确的、可交付的优化计划用于常规临床IMRT,而以前由于需要过多的计算时间而不实际。该项目的长期目标是开发快速、准确的IMRT剂量计算和优化方法,使剂量预测和优化收敛误差最小,利用这些更精确的IRMT积累更可靠的剂量-反应数据,并通过更适形的方法改善患者预后。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JEFFREY Vincent SIEBERS其他文献

JEFFREY Vincent SIEBERS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JEFFREY Vincent SIEBERS', 18)}}的其他基金

Comprehensive analysis and mitigation of the clinical effects of delineation and geometric uncertainties in conformal radiation therapy
适形放射治疗中轮廓和几何不确定性临床效果的综合分析和缓解
  • 批准号:
    10218076
  • 财政年份:
    2018
  • 资助金额:
    $ 26.7万
  • 项目类别:
Comprehensive analysis and mitigation of the clinical effects of delineation and geometric uncertainties in conformal radiation therapy
适形放射治疗中轮廓和几何不确定性临床效果的综合分析和缓解
  • 批准号:
    10460951
  • 财政年份:
    2018
  • 资助金额:
    $ 26.7万
  • 项目类别:
Dose Uncertainty Management and Probabilistic Planning
剂量不确定性管理和概率规划
  • 批准号:
    8256662
  • 财政年份:
    2007
  • 资助金额:
    $ 26.7万
  • 项目类别:
Dose Uncertainty Management and Probabilistic Planning
剂量不确定性管理和概率规划
  • 批准号:
    7806512
  • 财政年份:
    2007
  • 资助金额:
    $ 26.7万
  • 项目类别:
Dose Uncertainty Management and Probabilistic Planning
剂量不确定性管理和概率规划
  • 批准号:
    8074384
  • 财政年份:
    2007
  • 资助金额:
    $ 26.7万
  • 项目类别:
Dose Uncertainty Management and Probabilistic Planning
剂量不确定性管理和概率规划
  • 批准号:
    7214972
  • 财政年份:
    2006
  • 资助金额:
    $ 26.7万
  • 项目类别:
Optimized IMRT Incorporating Beam Delivery
优化的 IMRT 结合射束传输
  • 批准号:
    6679293
  • 财政年份:
    2003
  • 资助金额:
    $ 26.7万
  • 项目类别:
Optimized IMRT Incorporating Beam Delivery
优化的 IMRT 结合射束传输
  • 批准号:
    6765805
  • 财政年份:
    2003
  • 资助金额:
    $ 26.7万
  • 项目类别:
Optimized IMRT Incorporating Beam Delivery
优化的 IMRT 结合射束传输
  • 批准号:
    7071695
  • 财政年份:
    2003
  • 资助金额:
    $ 26.7万
  • 项目类别:

相似海外基金

FAIRClinical: FAIR-ification of Supplementary Data to Support Clinical Research
FAIRClinical:补充数据的 FAIR 化以支持临床研究
  • 批准号:
    EP/Y036395/1
  • 财政年份:
    2024
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Research Grant
The IDeA State Consortium for a Clinical Research Resource Center: Increasing Clinical Trials in IDeA States through Communication of Opportunities, Effective Marketing, and WorkforceDevelopment
IDeA 州临床研究资源中心联盟:通过机会交流、有效营销和劳动力发展增加 IDeA 州的临床试验
  • 批准号:
    10715568
  • 财政年份:
    2023
  • 资助金额:
    $ 26.7万
  • 项目类别:
Optimizing integration of veterinary clinical research findings with human health systems to improve strategies for early detection and intervention
优化兽医临床研究结果与人类健康系统的整合,以改进早期检测和干预策略
  • 批准号:
    10764456
  • 财政年份:
    2023
  • 资助金额:
    $ 26.7万
  • 项目类别:
The Mayo Clinic NeuroNEXT Clinical Research Site
梅奥诊所 NeuroNEXT 临床研究网站
  • 批准号:
    10743328
  • 财政年份:
    2023
  • 资助金额:
    $ 26.7万
  • 项目类别:
Addressing Underperformance in Clinical Trial Enrollments: Development of a Clinical Trial Toolkit and Expansion of the Clinical Research Footprint
解决临床试验注册表现不佳的问题:开发临床试验工具包并扩大临床研究足迹
  • 批准号:
    10638813
  • 财政年份:
    2023
  • 资助金额:
    $ 26.7万
  • 项目类别:
The Minnesota TMD IMPACT Collaborative: Integrating Basic/Clinical Research Efforts and Training to Improve Clinical Care
明尼苏达州 TMD IMPACT 协作:整合基础/临床研究工作和培训以改善临床护理
  • 批准号:
    10828665
  • 财政年份:
    2023
  • 资助金额:
    $ 26.7万
  • 项目类别:
Improving Multicultural Engagement in Clinical Research through Partnership with Federally Qualified Health Centers and Community Health Worker Programs
通过与联邦合格的健康中心和社区卫生工作者计划合作,改善临床研究中的多元文化参与
  • 批准号:
    10823828
  • 财政年份:
    2023
  • 资助金额:
    $ 26.7万
  • 项目类别:
Promoting a Culture Of Innovation, Mentorship, Diversity and Opportunity in NCI Sponsored Clinical Research: NCI Research Specialist (Clinician Scientist) Award Application of Janice M. Mehnert, M.D.
在 NCI 资助的临床研究中促进创新、指导、多样性和机会文化:Janice M. Mehnert 医学博士的 NCI 研究专家(临床科学家)奖申请
  • 批准号:
    10721095
  • 财政年份:
    2023
  • 资助金额:
    $ 26.7万
  • 项目类别:
Clinical Research Center for REstoration of NEural-based Function in the Real World (RENEW)
现实世界神经功能恢复临床研究中心 (RENEW)
  • 批准号:
    10795328
  • 财政年份:
    2023
  • 资助金额:
    $ 26.7万
  • 项目类别:
Clinical Research and Academic Success in Obstetrics & Gynecology
产科临床研究和学术成就
  • 批准号:
    10828252
  • 财政年份:
    2023
  • 资助金额:
    $ 26.7万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了