Interactions between geometry, topology, number theory, and dynamics
几何、拓扑、数论和动力学之间的相互作用
基本信息
- 批准号:2303572
- 负责人:
- 金额:$ 39.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Topology is the study of objects up to stretching, and geometry the study of rigid bodies. Work on this project will lead to advances in our understanding of both subjects by combining surprising relationships between them and deep connections to other areas of mathematics and computer science. Both topology and geometry are playing an increasingly important role in applications such as data mining and engineering design, and this project includes collaboration with computer scientists as well as the development of open-source software for exploring aspects of these problems. Graduate students will be trained in this project. The first topic of this project is effective Mostow rigidity and torsion growth in homology, questions motivated in part by number theory and global analysis. The project will explore how topological and geometric invariants behave under towers of finite covers and other geometric limits, and also study the extent to which different topological, geometrical, and arithmetic notions of complexity coincide for hyperbolic manifolds. The second topic of the project is counting essential surfaces in hyperbolic 3-manifolds and, in particular, divining the basic structures of such counts. This will involve placing these questions into the setting of measured laminations as well as relating them to the work of Mirzakhani and to dynamical questions about orbits of integer points under a family of interval isometries.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
拓扑学研究的是物体的伸展,几何学研究的是刚体。这个项目的工作将通过结合它们之间令人惊讶的关系以及与数学和计算机科学其他领域的深刻联系,促进我们对这两个学科的理解。拓扑学和几何学在数据挖掘和工程设计等应用中发挥着越来越重要的作用,该项目包括与计算机科学家的合作以及开发开源软件以探索这些问题的各个方面。研究生将接受该项目的培训。这个项目的第一个主题是有效的莫斯托刚性和扭转增长的同源性,问题的动机部分数论和全球分析。该项目将探索拓扑和几何不变量如何在有限覆盖和其他几何限制的塔下表现,并研究不同的拓扑,几何和算术复杂性概念在多大程度上符合双曲流形。 该项目的第二个主题是计算双曲3-流形中的本质曲面,特别是预测这种计数的基本结构。这将涉及将这些问题放入测量层压的设置中,并将其与Mirzakhani的工作以及关于区间等距族下整数点轨道的动力学问题相关联。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathan Dunfield其他文献
Nathan Dunfield的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nathan Dunfield', 18)}}的其他基金
Facets of the Topology and Geometry of 3-Manifolds
3-流形的拓扑和几何构面
- 批准号:
1811156 - 财政年份:2018
- 资助金额:
$ 39.98万 - 项目类别:
Standard Grant
Facets of the topology and geometry of 3-manifolds
三流形的拓扑和几何构面
- 批准号:
1105476 - 财政年份:2011
- 资助金额:
$ 39.98万 - 项目类别:
Standard Grant
Surfaces in finite covers of 3-manifolds and aspects of the mapping class groups
3-流形的有限覆盖中的表面和映射类组的方面
- 批准号:
0707136 - 财政年份:2007
- 资助金额:
$ 39.98万 - 项目类别:
Continuing Grant
Geometry and Topology of 3-Manifolds
三流形的几何和拓扑
- 批准号:
0071605 - 财政年份:2000
- 资助金额:
$ 39.98万 - 项目类别:
Fellowship Award
相似海外基金
Unveiling Functional Roles of Apical Surface Interactions Between Opposing Cell Layers
揭示相对细胞层之间顶端表面相互作用的功能作用
- 批准号:
10629101 - 财政年份:2023
- 资助金额:
$ 39.98万 - 项目类别:
Conference: The Many Interactions between Symplectic and Poisson Geometry
会议:辛几何和泊松几何之间的许多相互作用
- 批准号:
2304750 - 财政年份:2023
- 资助金额:
$ 39.98万 - 项目类别:
Standard Grant
Interactions between noncommutative geometry and quantum information
非交换几何与量子信息之间的相互作用
- 批准号:
RGPIN-2022-03373 - 财政年份:2022
- 资助金额:
$ 39.98万 - 项目类别:
Discovery Grants Program - Individual
Interactions between topology and geometry in low dimensions
低维拓扑和几何之间的相互作用
- 批准号:
2750813 - 财政年份:2022
- 资助金额:
$ 39.98万 - 项目类别:
Studentship
Interactions between representation theory, algebraic geometry, and physics
表示论、代数几何和物理学之间的相互作用
- 批准号:
RGPIN-2022-03135 - 财政年份:2022
- 资助金额:
$ 39.98万 - 项目类别:
Discovery Grants Program - Individual
Interactions between representation theory, algebraic geometry, and physics
表示论、代数几何和物理学之间的相互作用
- 批准号:
DGECR-2022-00437 - 财政年份:2022
- 资助金额:
$ 39.98万 - 项目类别:
Discovery Launch Supplement
Interactions between combinatorics, representation theory, and algebraic geometry
组合数学、表示论和代数几何之间的相互作用
- 批准号:
2265021 - 财政年份:2019
- 资助金额:
$ 39.98万 - 项目类别:
Studentship
Interactions Between Contact Geometry, Floer Theory and Low-Dimensional Topology
接触几何、弗洛尔理论和低维拓扑之间的相互作用
- 批准号:
1907654 - 财政年份:2019
- 资助金额:
$ 39.98万 - 项目类别:
Standard Grant
Interactions Between Representation Theory and Algebraic Geometry
表示论与代数几何之间的相互作用
- 批准号:
1707808 - 财政年份:2017
- 资助金额:
$ 39.98万 - 项目类别:
Standard Grant
Interactions between representation theory, Poisson algebras and differential algebraic geometry
表示论、泊松代数和微分代数几何之间的相互作用
- 批准号:
EP/N034449/1 - 财政年份:2016
- 资助金额:
$ 39.98万 - 项目类别:
Research Grant