Development of New Ultrasound Sensitive Antimicrobial Therapeutics for Antibiofilm Therapy

用于抗菌膜治疗的新型超声敏感抗菌疗法的开发

基本信息

  • 批准号:
    2594356
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Antibiotic resistance is an emerging global health pandemic attributed to over 750,000 deaths globally, causing an economic burden of $55 billion within the United States alone. Indeed, bacteria in community and nosocomial settings are generally recognized to live within multispecies microbial communities; far unlike the free-floating planktonic bacteria targeted with traditional antimicrobial agents. Curative treatment is greatly limited by restricted permeation of charged antimicrobials and host immune defences beyond the exopolysaccharide matrix. As such, there exists a critical unmet need for safe and effective treatment paradigms targeting biofilm communities to overcome shortfalls in conventional therapies. Sonobactericide is an emerging non-invasive therapeutic platform with established safety, tolerability, and capacity to meet these needs without potentiating multi-drug resistance. Through ultrasound, controlled local release of antimicrobials allow for selective accumulation and extravasation to target bacterial communities. By integrating high-pressure ultrasound for precision treatment, sonobactericide holds potential to transiently disrupt the exopolysaccharide matrix for alteration of biofilm adhesion and secondary bactericidal effect whilst increasing delivery of therapeutic agents to bacterial communities. Taken together, there exists possibility for truly selective, minimally invasive, high payload delivery and treatment of biofilm-related infections. Specifically, stimuli-responsive materials must be engineered for sustained and targeted drug release for bactericidal effect, whilst capitalizing upon the ability of high intensity focused ultrasound to, itself, alter biofilm adhesion and synergistically enhance therapeutic susceptibility. Moreover, the possibility of decorating the surface of the nanocarrier with targeting molecules promotes passage through biological barriers and would enable with high spatial and temporal specificity with minimal release of encapsulated drug to other organs. Building upon the mechanism of gas-filled nanomeric vesicles in altering biofilm adhesion, we hypothesize that enhanced delivery of loaded novel antimicrobial compounds will synergistically treat chronic infections caused by drug-resistant biofilm strains. Here, we propose to develop a paradigm-changing high-intensity sonobactericide platform to simultaneously bypass the exopolysaccharide matrix and deliver efficacious, synergistic agent-mediated bactericidal therapy to polymicrobial biofilms whilst mechanically disrupting biofilms in clinical infections. Overall, we envision our work to yield a novel sonobactericide nanodroplet platform that can meaningfully impact biofilm efficacy alongside altering future agent design strategy moving forward. In doing so, this project advances sonobactericide towards its promising potential as a non-invasive platform to treat biofilms without risk of antibiotic resistance. We anticipate the use of our antimicrobial platform to enable these capabilities in a novel, impactful manner as the first rationally engineered anti-biofilm platform with mechanism in-mind. With success, we hope to translate this work to non-human primates with the goal towards clinical translation. This innovation holds potential to have broad impact, with potential clinical implications across a wide scope of disease states. This project falls within the EPSRC Clinical Technologies research area. The team's clinical collaborators are The Bone Infection Unit at Nuffield Orthopaedic Hospital, Departments of Urology at Royal Free and John Radcliffe Hospitals and University Hospitals Southampton. Industry collaborators will include GSK, Norbrook Laboratories, Oxford Nano Imaging, Smith and Nephew, Boston Scientific and Storz. Our policy collaborators will be Public Health England, UKCEH and The Behavioural Insights Team.
抗生素耐药性是一种新出现的全球健康流行病,导致全球超过75万人死亡,仅在美国就造成550亿美元的经济负担。事实上,社区和医院环境中的细菌通常被认为是生活在多物种微生物群落中;与传统抗菌剂靶向的自由漂浮的寄生菌不同。治愈性治疗极大地受限于带电抗菌剂的受限渗透和超出胞外多糖基质的宿主免疫防御。因此,存在对靶向生物膜群落的安全和有效的治疗范例的关键未满足的需求,以克服常规疗法的不足。Sonobactericide是一种新兴的非侵入性治疗平台,具有既定的安全性,耐受性和满足这些需求的能力,而不会增强多药耐药性。通过超声波,抗菌剂的受控局部释放允许选择性积聚和外渗到目标细菌群落。通过整合高压超声波进行精确治疗,sonobactericide具有瞬时破坏胞外多糖基质的潜力,以改变生物膜粘附和二次杀菌效果,同时增加治疗剂向细菌群落的递送。总之,存在真正选择性、微创、高有效载荷递送和治疗生物膜相关感染的可能性。具体而言,刺激响应材料必须被设计用于持续和靶向药物释放以实现杀菌效果,同时利用高强度聚焦超声本身改变生物膜粘附并协同增强治疗敏感性的能力。此外,用靶向分子装饰纳米载体表面的可能性促进了通过生物屏障,并且将使得能够具有高的空间和时间特异性,同时最小限度地释放封装的药物到其他器官。基于充气纳米囊泡在改变生物膜粘附中的机制,我们假设负载的新型抗微生物化合物的增强递送将协同治疗由耐药生物膜菌株引起的慢性感染。在这里,我们建议开发一种改变范式的高强度声杀菌剂平台,以同时绕过胞外多糖基质并向多微生物生物膜提供有效的协同剂介导的杀菌治疗,同时机械破坏临床感染中的生物膜。总的来说,我们设想我们的工作产生一种新的杀声细菌纳米液滴平台,可以有意义地影响生物膜的功效,同时改变未来的药剂设计策略。在这样做的过程中,该项目将声波杀菌剂作为一种非侵入性平台,在没有抗生素耐药性风险的情况下治疗生物膜。我们期待使用我们的抗菌平台,以一种新颖、有效的方式实现这些功能,作为第一个考虑到机制的合理设计的抗生物膜平台。如果成功,我们希望将这项工作转化到非人类灵长类动物中,目标是实现临床转化。这项创新具有广泛的影响力,在广泛的疾病状态中具有潜在的临床意义。本项目属于EPSRC临床技术研究领域的福尔斯。该小组的临床合作者是纳菲尔德骨科医院的骨感染科、皇家自由医院和约翰拉德克利夫医院的泌尿科以及南安普顿大学医院。行业合作伙伴将包括GSK、Norbrook Laboratories、Oxford Nano Imaging、Smith and Nephew、Boston Scientific和Storz。我们的政策合作者将是英国公共卫生,UKCEH和行为洞察团队。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Development of a new program using ultrasound imaging of muscle echo intensity to improve motor function
开发利用肌肉回声强度超声成像来改善运动功能的新程序
  • 批准号:
    21K17470
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of a new method of ultrasound device that medical staffs can measure the degree of leg edema easily.
开发出一种新的超声波装置方法,让医护人员可以轻松测量腿部水肿程度。
  • 批准号:
    20H03964
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of New Combination Approach using Neuromuscular Electrical Stimulation, Ultrasound Stimulation and Stretching to Contractures.
开发使用神经肌肉电刺激、超声刺激和挛缩拉伸的新组合方法。
  • 批准号:
    19K19883
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of a new fetal therapy for twin-to-twin transfusion syndrome using high intensity focused ultrasound
使用高强度聚焦超声开发针对双胞胎输血综合征的新胎儿疗法
  • 批准号:
    18K15731
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
New approach in rodent model using high-frequency ultrasound imaging systems and development of novel therapies for fetal heart failure
使用高频超声成像系统的啮齿动物模型新方法和胎儿心力衰竭新疗法的开发
  • 批准号:
    17K16316
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Non-invasive diagnostic method of esophago-gastric varices by new development ultrasound elastography
新型超声弹性成像无创诊断食管胃静脉曲张
  • 批准号:
    17K09441
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of New Improved Perflutren Ultrasound Contrast Agent
新型改良Perflutren超声造影剂的研制
  • 批准号:
    9546839
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Development of New Improved Perflutren Ultrasound Contrast Agent
新型改良Perflutren超声造影剂的研制
  • 批准号:
    9409654
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Development of a new radiotherapy using targeted nanobubbles and ultrasound for metastatic lymph nodes
使用靶向纳米气泡和超声波治疗转移性淋巴结的新放射疗法的开发
  • 批准号:
    17K20077
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development a new system for per-implantitis using pulsed water jet and ultrasound hardness tester.
使用脉冲水射流和超声硬度测试仪开发用于种植体周围炎的新系统。
  • 批准号:
    16K15810
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了