In Vivo Drug Discovery From Compound Mixtures
从化合物混合物中发现体内药物
基本信息
- 批准号:6883584
- 负责人:
- 金额:$ 23.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2007-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (PROVIDED BY APPLICANT): Neuropsychiatric disorders are complex and involve multiple neuronal circuits. It is not surprising therefore that many of the most efficacious drugs in psychiatry have exceedingly complex pharmacology and were often discovered by observing how an animal's and human's behavior were altered in response to these drugs. For this reason, we believe that, to the extent possible, animal's behavior-based drug discovery and lead optimization should provide novel avenues to the treatment of psychiatric disorders.
The aim of this proposal is a large-scale, automated in vivo screening of libraries of compounds to discover novel compounds for the treatment of psychiatric disorders. We will combine two novel technologies that have the potential to substantially change how drug discovery is carried out. PsychoGenics will utilize its proprietary, high throughput broad-based behavioral assay for mice known as SmartCube(tm) to screen and optimize compounds selected from proprietary collections of compound mixtures provided by Mixture Sciences. SmartCube is an automated test for mice that allows us to determine the antidepressant, anxiolytic and antipsychotic potential of a test compound in only one test of 90 minutes. Compounds will be initially administered as mixture instead of single chemical entity and screen for their behavioral-activity. Two mixtures containing 64,0000 thousands compounds each will be tested. These compounds will be related to a common pharmacophore, which will imply a deconvolution process to define the active compounds. Mixture Sciences' algorithms will be utilized to identify active individual compounds from the mixtures that exhibit behavioral activity in mice and we will synthesize and test these individual compounds to confirm their level of activity in vivo. At that stage, active compounds will be further tested in more traditional behavioral assays to confirm that they are true positive and to further evaluate their level of activity and spectrum of therapeutic application. We will generate data for approximately 128,000 compounds and reduce the screening time from many years to several months. From this process we hope to select at least one compound for which further pre-clinical evaluation and likely clinical development will be warranted.
描述(申请人提供):神经精神障碍是复杂的,涉及多个神经元回路。因此,许多精神病学中最有效的药物具有极其复杂的药理作用也就不足为奇了,人们经常通过观察动物和人类的行为对这些药物的反应来发现这些药物。出于这个原因,我们认为,在可能的范围内,基于动物行为的药物发现和铅优化应该为治疗精神疾病提供新的途径。
这项提议的目的是对化合物库进行大规模、自动化的体内筛选,以发现用于治疗精神疾病的新化合物。我们将结合两项新技术,这两项技术有可能大幅改变药物发现的进行方式。心理基因公司将利用其专有的、高通量的、针对老鼠的广泛行为测试SmartCube(Tm)来筛选和优化从Mixture Sciences提供的专有化合物混合物集合中选择的化合物。SmartCube是一种针对小鼠的自动化测试,允许我们在90分钟的一次测试中确定测试化合物的抗抑郁、抗焦虑和抗精神病潜力。化合物最初将以混合物的形式给予,而不是单一的化学实体,并对其行为活性进行筛选。将测试两种分别含有64,000,000种化合物的混合物。这些化合物将与一个共同的药效团有关,这将意味着一个去卷积过程来定义活性化合物。Mixture Science的算法将被用来从在小鼠身上表现出行为活性的混合物中识别出活性的单独化合物,我们将合成并测试这些单独的化合物,以确认它们在体内的活性水平。在那个阶段,活性化合物将在更传统的行为分析中进一步测试,以确认它们确实是阳性的,并进一步评估它们的活性水平和治疗应用范围。我们将为大约128,000种化合物生成数据,并将筛选时间从多年减少到几个月。从这个过程中,我们希望选择至少一种化合物,对其进行进一步的临床前评估和可能的临床开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
EMER LEAHY其他文献
EMER LEAHY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('EMER LEAHY', 18)}}的其他基金
SCREENING OF INVESTIGATIONAL AGENTS THROUGH THE NINDS PRECLINICAL SCREENING PLATFORM FOR PAIN (PSPP)
通过 NINDS 疼痛临床前筛选平台 (PSPP) 筛选研究药物
- 批准号:
10176307 - 财政年份:2019
- 资助金额:
$ 23.23万 - 项目类别:
SCREENING OF INVESTIGATIONAL AGENTS THROUGH THE NINDS PRECLINICAL SCREENING PLATFORM FOR PAIN (PSPP)
通过 NINDS 疼痛临床前筛选平台 (PSPP) 筛选研究药物
- 批准号:
10892739 - 财政年份:2019
- 资助金额:
$ 23.23万 - 项目类别:
PSPP - IDENTIFICATION AND VALIDATION OF NOVEL PAIN RELATED ENDPOINTS, NOVEL ANIMAL MODELS OF PAIN AND PROFILING OF INVESTIGATIONAL AGENTS IN RODENT AND NON-RODENT [EXCLUDING (NHP)] SPECIES
PSPP - 新型疼痛相关终点的识别和验证、新型疼痛动物模型以及啮齿类和非啮齿类 [不包括 (NHP)] 物种中研究因子的分析
- 批准号:
10030882 - 财政年份:2019
- 资助金额:
$ 23.23万 - 项目类别:
SCREENING OF INVESTIGATIONAL AGENTS THROUGH THE NINDS PRECLINICAL SCREENING PLATFORM FOR PAIN (PSPP)
通过 NINDS 疼痛临床前筛选平台 (PSPP) 筛选研究药物
- 批准号:
10708731 - 财政年份:2019
- 资助金额:
$ 23.23万 - 项目类别:
SCREENING OF INVESTIGATIONAL AGENTS THROUGH THE NINDS PRECLINICAL SCREENING PLATFORM FOR PAIN (PSPP)
通过 NINDS 疼痛临床前筛选平台 (PSPP) 筛选研究药物
- 批准号:
10030921 - 财政年份:2019
- 资助金额:
$ 23.23万 - 项目类别:
相似海外基金
Identifying the causal role of the amygdala in human approach-avoidance conflict behavior test
确定杏仁核在人类接近-回避冲突行为测试中的因果作用
- 批准号:
10516014 - 财政年份:2021
- 资助金额:
$ 23.23万 - 项目类别:
Identifying the causal role of the amygdala in human approach-avoidance conflict behavior test
确定杏仁核在人类接近-回避冲突行为测试中的因果作用
- 批准号:
10549552 - 财政年份:2021
- 资助金额:
$ 23.23万 - 项目类别:
Context Effects of Mobile Consumer Behavior: Test of Affect and Regulatory Focus Theory in Shopping and Investment Decisions
移动消费者行为的情境效应:购物和投资决策中的影响和监管焦点理论检验
- 批准号:
414986791 - 财政年份:
- 资助金额:
$ 23.23万 - 项目类别:
Research Grants