Multiscale Rational Krylov Methods
多尺度有理 Krylov 方法
基本信息
- 批准号:2594408
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Numerical techniques are essential for understanding the dynamics of quantum systems, where experimental and analytical solutions may be difficult to obtain and numerically solving equations such as the Schrödinger equation is the only option available. Due to the dispersive nature of the equations of quantum mechanics, the solutions are typically highly oscillatory in both space and time. Moreover, there is a requirement to conserve physical properties of the solution, such as total probability, angular momentum, energy and unitarity. Consequently, highly specialised methods such as exponential splittings and (polynomial) Krylov methods have been devised for solving these equations.A major problem which arises in existing numerical techniques for solving these quantum equations is that they require very small time-step sizes. This leads to extremely long computational times, which makes these methods unfeasible when propagating over a large time domain. Such problems are particularly pronounced for an unbounded potential such as the Coulomb potential. Krylov methods for solving these problems proceed by approximating the matrix exponential for some large sparse matrix (the Hamiltonia) with the exponential of a smaller dense matrix.However, the dimensions of the small matrix required for reasonable accuracy can grow significantly with large time-steps, potentials with large norm, and when a high spatial grid resolution is required. Thus, the only practical recourse in these cases is to utilise excessively small time stepsRecently a very promising alternative, known as rational Krylov methods, have emerged for numerical evolution of PDEs. These methods have been found to be highly effective in achieving resolution independence. They also allow for significantly larger time-step sizes, making it ideal for dispersive equations and, consequently, seem to promising candidates for equations of quantum mechanics. The efficacy of rational Krylov methods crucially relies on the knowledge of the poles of the optimal rational approximant, however, and existing pole selection techniques are either suboptimal or heuristic . The aim of this project is to analyse and develop rational Krylov methods, with the goal of reducing computational times for long-time propagation. This will be done by developing more effective strategies for pole selection using multigrid approach combined with more traditional techniques from complex analysis.
数值技术对于理解量子系统的动力学是必不可少的,在量子系统中,实验和解析解可能很难获得,而数值求解方程,如薛定谔方程是唯一可用的选择。由于量子力学方程的色散性质,解在空间和时间上通常都是高度振荡的。此外,还要求守恒解的物理性质,如总概率、角动量、能量和么正性。因此,诸如指数分裂和(多项式)Krylov方法等高度专业化的方法被设计用于求解这些方程。现有求解这些量子方程的数值技术出现的一个主要问题是它们需要非常小的时间步长。这导致了极长的计算时间,这使得这些方法在大的时间域上传播时不可行。对于无界位势,如库仑势,这样的问题尤其明显。求解这些问题的Krylov方法是通过将一些大型稀疏矩阵(哈密顿矩阵)的指数近似为一个较小的稠密矩阵的指数来进行的。但是,当需要较高的空间网格分辨率时,对于较大的时间步长、具有较大范数的势和要求较高的空间网格分辨率,合理精度所需的小矩阵的维度可能会显著增加。因此,在这些情况下,唯一可行的办法是利用非常小的时间步长。最近,出现了一种非常有前途的替代方法,称为有理Krylov方法,用于偏微分方程组的数值演化。这些方法已被发现在实现分辨率独立性方面非常有效。它们还允许更大的时间步长,使其成为色散方程的理想选择,因此,似乎是量子力学方程的有前途的候选者。然而,有理Krylov方法的有效性关键依赖于对最优有理逼近极点的了解,而现有的极点选择技术要么是次优的,要么是启发式的。这个项目的目的是分析和开发有理Krylov方法,目的是减少长时间传播的计算时间。这将通过使用多重网格法与复杂分析中的更传统技术相结合来制定更有效的极点选择战略来实现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
基于Rational Krylov法和小波域稀疏约束的时间域海洋电磁三维正反演研究
- 批准号:41804098
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于Rational-Tensor(RTCam)摄像机模型的序列图像间几何框架研究
- 批准号:61072105
- 批准年份:2010
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Advances in rational operations in free analysis
自由分析中理性运算的进展
- 批准号:
2348720 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Rational Design of Dual-Functional Photocatalysts for Synthetic Reactions: Controlling Photosensitization and Reaction with a Single Nanocrystal
职业:用于合成反应的双功能光催化剂的合理设计:用单个纳米晶体控制光敏化和反应
- 批准号:
2339866 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Designing Rational Combinations to Improve CAR T Cell Therapy for Prostate Cancer
设计合理的组合以改善前列腺癌的 CAR T 细胞疗法
- 批准号:
10752046 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Computability and the absolute Galois group of the rational numbers
可计算性和有理数的绝对伽罗瓦群
- 批准号:
2348891 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Rational GAGA and Applications to Field Invariants
Rational GAGA 及其在场不变量中的应用
- 批准号:
2402367 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
REVOLUPHON - Rational Evolutionary Phonology
REVOLUPHON - 理性进化音韵学
- 批准号:
EP/Y02429X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Control of linear and nonlinear physical properties based on rational design
基于合理设计的线性和非线性物理特性的控制
- 批准号:
23K04688 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Rational Design of Heterogeneous Catalysts for Sustainable Applications
可持续应用多相催化剂的合理设计
- 批准号:
2900533 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Rational Heterogeneity of Membrane Electrode Assemblies for Next-Generation Polymer Electrolyte Fuel Cells (HETEROMEA)
下一代聚合物电解质燃料电池膜电极组件的合理异质性(HETEROMEA)
- 批准号:
EP/X023656/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant