Green ammonia cracking for transport
用于运输的绿色氨裂解
基本信息
- 批准号:2594549
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Decarbonization of energy generation and the transportation sector is crucial to help combat climate change. A convenient way to do this is using hydrogen and/or ammonia, which do not contain carbon. 'Green' ammonia is ammonia produced via the Haber-Bosch process with hydrogen and nitrogen as input feed reactants. Hydrogen is produced from water electrolysis and nitrogen from air separation, both with renewable electricity [1].Ammonia is dispatchable and has a high energy density and high hydrogen gravimetric content, allowing for easier and cheaper storage and transportation than hydrogen. Ammonia can then be transported and subsequently cracked back to hydrogen where and when it is needed [2]. Moreover, hydrogen is beginning to be widely used in proton exchange membrane fuel cells in transport vehicles or for electricity generation [1].Thus, ammonia can be used an energy storage vector, allowing for on-demand dispatchable renewable energy and for transport. The impact of which is far reaching in green transport fuels and renewable energy industries, given ammonia's already extensive storage and distribution networks [2] since ammonia is widely used in fertilisers [1].The aim of the project is to provide a techno-economic analysis of green ammonia cracking for transport. The transport options investigated will be aviation, ships, heavy goods vehicles, passenger vehicles, buses and trains, which all have potential for using hydrogen as a fuel [3].It is aimed to determine the most efficient and cost effective option from green ammonia cracking. The geographical location of the ammonia input, distance from the cracker to the location of fuelling, distance the vehicle (ship, plane, car etc.) must travel, and centralised/decentralised systems will be investigated on an economic and technical basis, and optimised. Ammonia cracking requires energy inputs and the conversion of the cracking reaction is not complete, on a large scale (>100 tons per day), it has not been proven commercially or industrially yet [2]. Moreover, ammonia crackers have previously been modelled as steam methane reformers [4] and only very recently in more representative cracking conditions, since ammonia crackers can't yet be straightforwardly modelled in chemical process simulators (such as Aspen PlusTM) [2]. Thus, investigating the technical and economic viability of green ammonia cracking for large scale transport applications will help provide answers to existing research gaps.This project falls within the EPSRC energy research area, specifically in 'Hydrogen and alternative energy vectors' and 'Energy Storage'. [1] "Ammonia: zero-carbon fertiliser, fuel and energy store." The Royal Society, London, UK, pp. 1-40, 2020.[2] C. Makhloufi and N. Kezibri, "Large-scale decomposition of green ammonia for pure hydrogen production," Int. J. Hydrogen Energy, vol. 46, no. 70, pp. 34777-34787, 2021.[3] "Hydrogen Transport - Fuelling The Future." ARUP, London, UK, pp. 1-12, 2021.[4] Z. Cesaro, M. Ives, R. Nayak-Luke, M. Mason, and R. Bañares-Alcántara, "Ammonia to power: Forecasting the levelized cost of electricity from green ammonia in large-scale power plants," Appl. Energy, vol. 282, p. 116009, 2021.
能源生产和运输部门的脱碳对于帮助应对气候变化至关重要。一种方便的方法是使用不含碳的氢和/或氨。 “绿色”氨是通过哈伯-博世工艺以氢气和氮气作为输入进料反应物生产的氨。氢气是通过水电解产生的,氮气是通过空气分离产生的,两者都通过可再生电力产生[1]。氨是可调度的,具有高能量密度和高氢重量含量,比氢更容易、更便宜的储存和运输。然后,氨可以被运输并随后在需要的地方和时间裂解回氢气[2]。此外,氢开始广泛用于运输车辆的质子交换膜燃料电池或用于发电[1]。因此,氨可以用作能量存储载体,允许按需调度可再生能源和运输。鉴于氨广泛用于化肥中 [1],氨已经拥有广泛的储存和分销网络 [2],其对绿色运输燃料和可再生能源行业的影响是深远的。该项目的目的是提供运输用绿色氨裂解的技术经济分析。调查的运输选择包括航空、船舶、重型货车、客车、公共汽车和火车,这些都具有使用氢作为燃料的潜力[3]。其目的是确定绿色氨裂解中最有效和最具成本效益的选择。氨输入的地理位置、裂解装置到燃料加料地点的距离、车辆(轮船、飞机、汽车等)必须行驶的距离以及集中/分散系统将在经济和技术基础上进行研究和优化。氨裂解需要能量输入,裂解反应转化不完全,大规模(>100吨/天)尚未在商业或工业上得到证实[2]。此外,氨裂化装置以前被建模为蒸汽甲烷重整器[4],直到最近才在更具代表性的裂化条件下建模,因为氨裂化装置还不能在化学过程模拟器(例如Aspen PlusTM)中直接建模[2]。因此,研究大规模运输应用的绿色氨裂解技术和经济可行性将有助于解决现有研究空白。该项目属于 EPSRC 能源研究领域,特别是“氢和替代能源载体”和“能源存储”。 [1]“氨:零碳肥料、燃料和能源储存。”英国皇家学会,英国伦敦,第 1-40 页,2020 年。[2] C. Makhloufi 和 N. Kezibri,“大规模分解绿色氨以生产纯氢”,Int。 J.氢能源,卷。 46,没有。 70,第 34777-34787 页,2021 年。[3] “氢运输——为未来提供燃料。” ARUP,英国伦敦,第 1-12 页,2021 年。[4] Z. Cesaro、M. Ives、R. Nayak-Luke、M. Mason 和 R. Bañares-Alcántara,“氨发电:预测大型发电厂绿色氨发电的平准化成本”,Appl。能源,卷。 282,p。 116009, 2021。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
SIRT5/ammonia信号通路介导适应性自噬在急性心肌梗死中的作用及其机制研究
- 批准号:81900312
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Powering Small Craft with a Novel Ammonia Engine
用新型氨发动机为小型船只提供动力
- 批准号:
10099896 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
STTR Phase I: Microwave-Enhanced Modular Ammonia Synthesis
STTR 第一阶段:微波增强模块化氨合成
- 批准号:
2335104 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
ENTICE: Enhanced Ammonia Cracking to Improve Engine Combustion and Emissions
ENTICE:增强氨裂解以改善发动机燃烧和排放
- 批准号:
10096979 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
Manufacturing conductive oxides as catalyst support for energy efficient production of hydrogen and ammonia
制造导电氧化物作为氢和氨节能生产的催化剂载体
- 批准号:
2904783 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Studentship
Development of in situ ammonia capture for enhanced catalytic ammonia synthesis
开发用于增强催化氨合成的原位氨捕获
- 批准号:
24K17765 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
EAGER: Enhancement of Ammonia combustion by spatiotemporal control of plasma kinetics
EAGER:通过等离子体动力学的时空控制增强氨燃烧
- 批准号:
2337461 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Novel High-Efficiency Ammonia engine Technology for Heavy Duty marine applications (HEAT-HD)
适用于重型船舶应用的新型高效氨发动机技术 (HEAT-HD)
- 批准号:
10096638 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
Three-dimensional solar-energy-driven hydrogen generation from ammonia
三维太阳能驱动的氨制氢
- 批准号:
DP240102787 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Accurate Determination of Branching Fractions in Ammonia Combustion
氨燃烧中支化分数的准确测定
- 批准号:
2329341 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
High-productivity ammonia electrosynthesis
高产氨电合成
- 批准号:
LP210301321 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Linkage Projects