Effective bounds for common torsion points of elliptic curves
椭圆曲线公共扭转点的有效界
基本信息
- 批准号:2595074
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Given an elliptic curve E over a number field K we can consider the torsion points of E with respect to the group law of the curve. Passing to the algebraic closure, we see that there is an infinite number of such torsion points. In a paper titled 'Algebraic Varieties over Small Fields' Bogomolov and Tschinkel show that given two distinct elliptic curves E and E' with choices of 2:1 covers of the projective line; the intersection of the images of their torsion points gives a finite set. In a further paper with Fu titled 'Torsion of Elliptic Curves and Unlikely Intersections' they conjecture that this intersection is not only finite but uniformly bounded for all elliptic curves. Poineau was able to settle the conjecture with the caveat that the uniform bound is not effective.The approach of showing the original boundedness result by Bogomolov et al utilises the Manin-Mumford conjecture which shows that given an integral curve in an abelian variety of genus greater than 2, the number of torsion points on the curve must be finite. The conjecture was originally proved by Raynaud and in his paper, he claims that the bounds can be made effective and calculable with some assumptions on the abelian variety in question.Using the results of Raynaud and the assumptions he requires I have been able to obtain effective bounds for the Bogomolov-Fu-Tschinkel conjecture in the case of good reduction of the curves at a fixed small unramified prime . The aim of the project is to extend the proof to the multiplicative reduction case. Then, if we are able to extend the techniques to the case of small ramification degree, combining the multiplicative result with semistability one would be able to prove an effective version of the conjecture in full generality.The analogue of the problem for algebraic tori asks to study the intersection of roots of unity in the projective line after applying a projective transformation. With results of Beukers-Smyth I have been able to prove the effective analogue of the conjecture for the torus.The analogue of an elliptic curve's 2:1 cover of the projective line for abelian surfaces is the Kummer surface. I am also working on related arithmetic properties of Kummer surfaces attached to abelian surfaces with Alexei Skorobogatov at Imperial College London.
给定数域K上的一条椭圆曲线E,我们可以考虑E关于该曲线的群律的扭点。通过代数闭包,我们看到有无限数量的这样的扭点。Bogomolov和Tschinkel在一篇题为《小域上的代数变体》的论文中证明,给定两条截然不同的椭圆曲线E和E,并选择射影直线的2:1覆盖,它们的扭点的像的交集就是一个有限集。在另一篇题为《椭圆曲线的扭转和不太可能的交集》的论文中,他们猜想这个交集对所有的椭圆曲线来说不仅是有限的,而且是一致有界的。Poineau用Bogomolov等人的原始有界性结果证明了这一猜想是无效的,该方法利用了Manin-Mumford猜想,该猜想表明,给定一个大于2的交换变种中的一条积分曲线,该曲线上的扭点的个数一定是有限的.这个猜想最初是由Raynaud证明的,在他的论文中,他声称这个界是有效的和可计算的,利用Raynaud的结果和他所要求的假设,我得到了Bogomolov-Fu-Tschinkel猜想的有效界,在曲线在固定的小未分支素数处良好约化的情况下。该项目的目的是将证明推广到乘法约简的情况。然后,如果我们能够将技术扩展到小分支度的情况,将乘法结果与半稳定性相结合,就能够证明该猜想的一个完整的有效版本。代数环面问题的类比要求在应用射影变换后研究投影线上单位根的交集。利用Beukers-Smyth的结果,我证明了环面猜想的有效类比:椭圆曲线对阿贝尔曲面射影直线的2:1覆盖的类比是Kummer曲面。我还与伦敦帝国理工学院的Alexei Skorobogatov一起研究附着在阿贝尔曲面上的Kummer曲面的相关算术性质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
资本外逃及其逆转:基于中国的理论与实证研究
- 批准号:70603008
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Lower Bounds for Shallow Circuits
职业生涯:浅层电路的下限
- 批准号:
2338730 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Complexity Lower Bounds from Expansion
扩展带来的复杂性下限
- 批准号:
23K16837 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Non-parametric estimation under covariate shift: From fundamental bounds to efficient algorithms
协变量平移下的非参数估计:从基本界限到高效算法
- 批准号:
2311072 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Towards new classes of conic optimization problems
迈向新类别的二次曲线优化问题
- 批准号:
23K16844 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Tighter error bounds for representation learning and lifelong learning
表征学习和终身学习的更严格的误差范围
- 批准号:
RGPIN-2018-03942 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Branching Program Lower Bounds
分支程序下界
- 批准号:
RGPIN-2019-06288 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Lower bounds, meta-algorithms, and pseudorandomness
下界、元算法和伪随机性
- 批准号:
RGPIN-2019-05543 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Bringing upper and lower bounds closer in computational geometry
使计算几何中的上限和下限更加接近
- 批准号:
567959-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Lower bounds on ranks of nontrivial toric vector bundles
非平凡环面向量丛的秩下界
- 批准号:
558713-2021 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Extremal Combinatorics Exact Bounds
极值组合精确界
- 批准号:
574168-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards