Leveraging biomolecular simulations to understand and predict the Blood-Brain-Barrier permeability of drugs

利用生物分子模拟来了解和预测药物的血脑屏障渗透性

基本信息

  • 批准号:
    2596627
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

The context of the researchThe Blood-Brain-Barrier (BBB) is a collection of endothelial cells that selectively regulates the influx of any given substance from our blood into the central nervous system (CNS). Crucial to medical treatments relying on the delivery of medicinal drugs in to CNS is the capability of siad drugs to actually cross the BBB.In recent years, there has been an increase in pibicly available data on the BBB permeability of drugs. This has led to novel research in Machine Learning (ML) methods of predicting BBB permeability. However, current ML methods of predicting the permeability of the BBB to a given drug seem to have reached its limit in accuracy and lack explainability.The aim of the project will be twofold, to both improve the accuracy and explanability of ML models of BBB permeability. We ultimately seek to understand the structure-function relation at the heart of a given drug (in-ability) to cross the BBB. The primary method for this will ne through combining machine learning with biomolecular simulations of the BBB. Through leveraging the high-performance computational resources at Warwick, this project hopes to fully simulate dynamics for hundreds for drug molecules potentially aided by enhanced sampling techniques. This is far a greater number than any exsiting technique as present techniques are limited to a small handful of molecules at a time. This project will yield unparallel novel insight into kinetics of BBBoermeability, as well revolutionise the current ML moldelling paradigm.The blood brain barrier (BBB) is a thin layer of cells which seperates brain cells from the bloodstream. In order to effectively develop drugs whihc treat ailments of the brain, these drugs need to be able to cross the BBB. In the recent years, as availabilty of data has improved data driven techniques to predict whether a drug can cross the BBB. However, these models seemed to have reached a limit performance. They can also can't explain why a molecule can or cannot pass through the BBB.The aims and objectives of the researchThis project aims to use large scale simulations of the BBB along with new data driven techniques to develop new paradigms of BBB modelling. These techniques should allow better accuracy in predicting whather a drug can pass through the BBB. along with providing explanations as to the reasoning behind is predictions.The novelty of the research methodologyCurrently, sumulations of drugs-BBB exist. but they can only be applied to a small handful of drug molecules. This project aims to use new methods of simulation with high-performance computing to simulate hundreds of drug molecules. this can also be used to inform new data driven approaches and develop more accurate methods.The potential impact, applications and benefitsAn improved model and understanding of BBB permeability can greatly reduce the cost of and accelerate drug development. This would be of great interest to pharmacetical companies such as Astrazeneca, with whom Dr Sosso's Group is actively collaborating.How the research relates to the remitThe research falls into both the EPSRC remit of biological chemistry and biological informatics as well as computational chemistryExternal Partner - AtstraZenecaAs one of the major players in the context of Pharmceuticals, AstraZeneca has obvious interest in improving on the current capabilities of Machine Learning on terms of predicting the ability of drugs to permeate tje Blood-Brain-Barrier. This project specifically seeks to go beyond the state of the art leveraging large scale molecular dynamic simulations to both enhance the datasets available to us at the moment and to understand tje mechanism(s) at the heart of the Blood-Brain-Barrier permeation by drug-like molecules. thus, the outcomes of this project layout a very concrete path toward real-world impact.
血脑屏障(BBB)是一组内皮细胞,它们选择性地调节血液中任何给定物质流入中枢神经系统(CNS)。对于依赖于将药物递送到CNS的医学治疗来说,关键是药物实际穿过BBB的能力。近年来,关于药物的BBB渗透性的可利用数据增加。这导致了对预测BBB渗透性的机器学习(ML)方法的新研究。然而,目前预测血脑屏障对特定药物的渗透性的ML方法似乎已经达到了其准确性的极限,并且缺乏可解释性。该项目的目的是双重的,以提高血脑屏障渗透性的ML模型的准确性和可解释性。我们最终寻求了解给定药物(不能)穿过血脑屏障的核心结构-功能关系。主要的方法是将机器学习与BBB的生物分子模拟相结合。通过利用沃里克的高性能计算资源,该项目希望通过增强的采样技术来充分模拟数百种药物分子的动力学。这比任何现有技术都要多得多,因为目前的技术每次仅限于少数分子。该项目将产生对血脑屏障的动力学的独特见解,并彻底改变当前的ML建模范式。血脑屏障(BBB)是将脑细胞与血流分离的薄层细胞。为了有效地开发治疗大脑疾病的药物,这些药物需要能够穿过BBB。近年来,随着数据的可用性已经改进了数据驱动技术来预测药物是否可以穿过BBB。然而,这些模型似乎已经达到了极限性能。他们也不能解释为什么一个分子可以或不能通过血脑屏障。研究的目的和目标这个项目的目的是使用大规模的血脑屏障模拟沿着新的数据驱动技术,以开发血脑屏障建模的新范式。这些技术可以更准确地预测药物可以通过BBB。沿着的是提供解释背后的推理是预测。研究方法的新奇目前,药物的模拟-血脑屏障存在。但它们只能应用于少数药物分子。该项目旨在使用高性能计算的新模拟方法来模拟数百种药物分子。这也可以用来通知新的数据驱动的方法,并开发更准确的方法。潜在的影响,应用和好处一个改进的模型和对BBB渗透性的理解可以大大降低药物开发的成本并加速药物开发。这对阿斯利康这样的制药公司来说将是非常有兴趣的,Sosso博士的团队正在与之积极合作。研究与汇款的关系研究福尔斯既属于EPSRC的生物化学和生物信息学的职权范围,也属于计算化学的职权范围外部合作伙伴-AtstraZeneca作为制药领域的主要参与者之一,阿斯利康显然有兴趣提高机器学习的当前能力,预测药物渗透血脑屏障的能力。该项目旨在超越现有技术,利用大规模分子动力学模拟来增强我们目前可用的数据集,并了解药物样分子渗透血脑屏障的核心机制。因此,该项目的成果为实现现实世界的影响规划了一条非常具体的道路。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

EAGER: Electrical detection of individual biomolecular interactions and machine learning-assisted simulations: from single-molecule biophysics to the RISC complex
EAGER:单个生物分子相互作用的电检测和机器学习辅助模拟:从单分子生物物理学到 RISC 复合体
  • 批准号:
    2027530
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RUI: Combining Experiments and Simulations to Optimize Biomolecular Ionic Liquids for Protein Stabilization
RUI:结合实验和模拟来优化生物分子离子液体以稳定蛋白质
  • 批准号:
    1904797
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of Enhanced Sampling Methods for Biomolecular Simulations applying Machine Learning methods.
应用机器学习方法开发生物分子模拟的增强采样方法。
  • 批准号:
    2125311
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Studentship
Molecular and Coarse-Grained Simulations of Biomolecular Processes at the Petascale
千万亿级生物分子过程的分子和粗粒度模拟
  • 批准号:
    1811600
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CDS&E: Adaptive Biomolecular Free Energy Simulations on Massive Computational Grids
CDS
  • 批准号:
    1665032
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Simulations of Biomolecular Interactions to Support Product Development
模拟生物分子相互作用以支持产品开发
  • 批准号:
    520006-2017
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Engage Grants Program
Expanding the limits of biomolecular simulations: revealing the mechanisms of blood clot formation using Fluctuating Finite Element Analysis.
扩大生物分子模拟的极限:使用波动有限元分析揭示血凝块形成的机制。
  • 批准号:
    EP/M004228/1
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Petascale Simulations of Biomolecular Function and Conformational Change
生物分子功能和构象变化的千万亿级模拟
  • 批准号:
    1439982
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Coupling nanoscale device modeling with coarse-grained biomolecular simulations
职业:将纳米级器件建模与粗粒度生物分子模拟相结合
  • 批准号:
    1352218
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Ultra-Coarse-Grained Simulations of Biomolecular Processes at the Petascale
千万亿级生物分子过程的超粗粒度模拟
  • 批准号:
    1440027
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了