Learning for Reliable Autonomous Systems and Control
学习可靠的自主系统和控制
基本信息
- 批准号:2597250
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Recent years have seen an increased interest in the use of data, together with machine learning techniques, to develop systems that operate autonomously in the physical world around us. This includes applications ranging from robotic systems or autonomous vehicles, to the industrial Internet-of-Things. Data-driven methods can complement traditional model-based approaches and are particularly suitable for engineering problems where prior physical models, e.g., from first principles, are unavailable, as well as in situations where the environment in which the systems operate is changing over time. However, despite the need for data-driven methodologies alongside model-based ones, the research community is still trying to understand how to employ such methods safely and reliably. When relying on limited amount of data, which is often the case in scenarios where data is collected from the physical world, the outputs of the machine learning procedure will have a mismatch and not perform equally well compared to the case where a model is completely known. Furthermore, recent evidence shows that the outputs of the machine learning procedure can behave unexpectedly when faced with perturbations which can be random or even malicious. This project aims to fundamentally understand the issues of robustness and reliability in order to enable the development of autonomous systems that can be trusted. To answer these questions, the project offers a new perspective by combining methods from robust control theory and robust optimisation with data-driven methods. For the latter, of particular interest are reinforcement learning methods, because of the need to design autonomous systems that operate in dynamic environments and learn from collected data trajectories over time. Robust control and robust optimization techniques have been traditionally developed for the study of models of dynamical systems with uncertainty, while in contrast this project will explore their use when uncertainty is stemming from the use of data and machine learning techniques. As a result, the objective of the project is twofold. First, it will provide a mathematical framework for characterising fundamentally robustness in reinforcement learning approaches and understanding what the worst-case impact of potential perturbations is. Second, it will develop a methodology for counteracting lack of robustness by rethinking the way data are used to design dynamic autonomous systems. This will be achieved with new algorithms that take into account the developed notions of robustness during the learning phase. These algorithms will be primarily developed and tested on a computer simulation environment for multi-robot systems operating in unknown and dynamic environments, with the potential for experimental validations at a later stage on a proof-of-concept platform. This project falls within the EPSRC Artificial intelligence and robotics theme, and additionally makes strong connections with the EPSRC Engineering research area (Control Engineering).
近年来,人们对使用数据以及机器学习技术来开发在我们周围的物理世界中自主运行的系统的兴趣越来越大。这包括从机器人系统或自动驾驶汽车到工业物联网的应用。数据驱动方法可以补充传统的基于模型的方法,特别适用于工程问题,其中先前的物理模型,例如,从第一原理来看,是不可用的,以及在系统运行的环境随时间变化的情况下。然而,尽管需要数据驱动的方法和基于模型的方法,研究界仍在努力了解如何安全可靠地使用这些方法。当依赖于有限数量的数据时,这通常是从物理世界收集数据的情况,机器学习过程的输出将具有不匹配,并且与模型完全已知的情况相比表现不佳。此外,最近的证据表明,当面对随机甚至恶意的扰动时,机器学习过程的输出可能会表现得出乎意料。该项目旨在从根本上了解鲁棒性和可靠性问题,以便能够开发可信赖的自治系统。为了回答这些问题,该项目提供了一个新的视角,将鲁棒控制理论和鲁棒优化方法与数据驱动方法相结合。对于后者,特别感兴趣的是强化学习方法,因为需要设计在动态环境中运行的自主系统,并随着时间的推移从收集的数据轨迹中学习。鲁棒控制和鲁棒优化技术传统上是为研究具有不确定性的动态系统模型而开发的,而相比之下,本项目将探索它们在不确定性源于使用数据和机器学习技术时的用途。因此,该项目的目标是双重的。首先,它将提供一个数学框架,用于从根本上描述强化学习方法的鲁棒性,并了解潜在扰动的最坏情况影响。其次,它将通过重新思考数据用于设计动态自治系统的方式来开发一种方法来抵消鲁棒性的缺乏。这将通过新的算法来实现,这些算法考虑到了在学习阶段开发的鲁棒性概念。这些算法将主要在计算机模拟环境中开发和测试,用于在未知和动态环境中运行的多机器人系统,并有可能在稍后阶段在概念验证平台上进行实验验证。该项目福尔斯EPSRC人工智能和机器人主题,并与EPSRC工程研究领域(控制工程)建立了密切的联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
I-Corps: Affordable and Reliable Autonomous Wheelchair
I-Corps:经济实惠且可靠的自主轮椅
- 批准号:
2300677 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
ERI: Design of Reliable Autonomous Engineering Systems with Active Failure Prevention
ERI:具有主动故障预防功能的可靠自主工程系统设计
- 批准号:
2301012 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Secure and reliable communication strategies for connected and autonomous vehicles
适用于联网和自动驾驶车辆的安全可靠的通信策略
- 批准号:
RGPIN-2022-03254 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: NeTS: Small: Reliable Task Offloading in Mobile Autonomous Systems Through Semantic MU-MIMO Control
合作研究:NeTS:小型:通过语义 MU-MIMO 控制实现移动自治系统中的可靠任务卸载
- 批准号:
2134973 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
MOLE – Expanding the UK’s EV Charging Infrastructure via Efficient, Reliable, Autonomous Charging Technology
MOLE — 通过高效、可靠、自主的充电技术扩展英国的电动汽车充电基础设施
- 批准号:
10005231 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Collaborative R&D
Collaborative Research: NeTS: Small: Reliable Task Offloading in Mobile Autonomous Systems Through Semantic MU-MIMO Control
合作研究:NeTS:小型:通过语义 MU-MIMO 控制实现移动自治系统中的可靠任务卸载
- 批准号:
2134567 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
MLWiNS: Ultra-Reliable Collaborative Computing for Autonomous Unmanned Aerial Vehicles
MLWiNS:用于自主无人机的超可靠协作计算
- 批准号:
2003237 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
A reliable testing framework for connected/autonomous vehicles software
可靠的联网/自动驾驶汽车软件测试框架
- 批准号:
552385-2020 - 财政年份:2020
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Detection and Tracking of Surroundings for Reliable and Cost Effective Autonomous Vehicles
检测和跟踪环境,实现可靠且具有成本效益的自动驾驶车辆
- 批准号:
504642-2017 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
CRII: NeTS: Towards Joint Mobile Broadband and Ultra-Reliable Low-Latency Communications for Connected Autonomous Vehicles
CRII:NeTS:为联网自动驾驶汽车实现联合移动宽带和超可靠低延迟通信
- 批准号:
1941348 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




