MLWiNS: Ultra-Reliable Collaborative Computing for Autonomous Unmanned Aerial Vehicles

MLWiNS:用于自主无人机的超可靠协作计算

基本信息

  • 批准号:
    2003237
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Unmanned Autonomous Vehicles (UAV) are expected to play a central role in many applications of great interest, including urban and infrastructure monitoring, precision agriculture and delivery services. However, making the operations of these airborne platforms autonomous requires the execution of algorithms for the real-time analysis of the surrounding environment and mission planning. The complexity of these algorithms clashes with the inherent constraints of UAVs, whose embedded systems have limited computing power and energy supply. The proposed research aims at the development of techniques to make distributed computing ultra reliable in the context of UAV systems. The project establishes a layer of intelligence that controls in real-time how information is propagated and processed across the layers of the systems to transform sensorial input into decisions, as well as a semantic form of neural compression to significantly reduce the amount of data transported over weak wireless links. This project will have a broad impact in terms of education, mentorship and outreach. The impact of this research effort will be broadened by providing unique outreach and educational opportunities to students at the collegiate and high school level.The proposed project approaches the problem from two complementary angles: (1) designing deep reinforcement learning (RL) agents that learn to optimally communicate data across noisy channels, and (2), building novel lossy compression algorithms based on probabilistic deep learning that are specifically designed for distributed machine learning without a human in the loop. For (1), one of the key challenges resides in the multi-scale nature of the stochastic processes driving the system dynamics that present important geographical and temporal trends at different scales. An innovative hierarchical learning approach will be used to make the RL agent effective as the system dynamics evolve across time and space. For (2), novel kinds of extreme neural lossy compression algorithms based on Variational AutoEncoders (VAE) with additional supervision will be designed. Instead of focusing on signal reconstruction, the resulting compressor will aim at preserving only relevant information needed for a specified supervised learning task, leading to the new paradigm of supervised (or semantic) compression.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
无人驾驶汽车(UAV)有望在许多令人感兴趣的应用中发挥核心作用,包括城市和基础设施监控、精准农业和配送服务。然而,使这些机载平台的操作自主化需要执行算法来实时分析周围环境和任务规划。这些算法的复杂性与无人机的固有约束相冲突,无人机的嵌入式系统具有有限的计算能力和能量供应。提出的研究旨在发展技术,使分布式计算在无人机系统的背景下超可靠。该项目建立了一个智能层,可以实时控制信息在系统各层之间的传播和处理方式,从而将感官输入转化为决策,同时还建立了一种语义形式的神经压缩,以显著减少通过弱无线链路传输的数据量。这个项目将在教育、指导和推广方面产生广泛的影响。这项研究工作的影响将通过为大学和高中的学生提供独特的外展和教育机会而扩大。提出的项目从两个互补的角度来解决这个问题:(1)设计深度强化学习(RL)代理,学习如何在有噪声的信道上最佳地通信数据;(2)构建基于概率深度学习的新型有损压缩算法,该算法专门为分布式机器学习而设计,无需人工参与。对于(1),关键挑战之一在于驱动系统动力学的随机过程的多尺度性质,这些过程在不同尺度上呈现重要的地理和时间趋势。一种创新的分层学习方法将用于使RL代理在系统动态跨时间和空间演变时有效。(2)设计了基于附加监督的变分自编码器(VAE)的新型极端神经有损压缩算法。而不是专注于信号重建,由此产生的压缩器将旨在仅保留指定监督学习任务所需的相关信息,从而导致监督(或语义)压缩的新范式。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(43)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal Task Allocation for Time-Varying Edge Computing Systems with Split DNNs
具有分割 DNN 的时变边缘计算系统的最优任务分配
Neural Transformation Learning for Deep Anomaly Detection Beyond Images
  • DOI:
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen Qiu;Timo Pfrommer;M. Kloft;S. Mandt;Maja R. Rudolph
  • 通讯作者:
    Chen Qiu;Timo Pfrommer;M. Kloft;S. Mandt;Maja R. Rudolph
Intrusion Detection Framework for Invasive FPV Drones Using Video Streaming Characteristics
  • DOI:
    10.1145/3579999
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Anas Alsoliman;Giulio Rigoni;Davide Callegaro;M. Levorato;C. Pinotti;M. Conti
  • 通讯作者:
    Anas Alsoliman;Giulio Rigoni;Davide Callegaro;M. Levorato;C. Pinotti;M. Conti
Towards Empirical Sandwich Bounds on the Rate-Distortion Function
  • DOI:
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yibo Yang;S. Mandt
  • 通讯作者:
    Yibo Yang;S. Mandt
Split Computing for Complex Object Detectors: Challenges and Preliminary Results
复杂目标检测器的分割计算:挑战和初步结果
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marco Levorato其他文献

Distributed Radiance Fields for Edge Video Compression and Metaverse Integration in Autonomous Driving
用于自动驾驶中边缘视频压缩和元宇宙集成的分布式辐射场
  • DOI:
    10.48550/arxiv.2402.14642
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eugen Šlapak;Matús Dopiriak;M. A. Faruque;J. Gazda;Marco Levorato
  • 通讯作者:
    Marco Levorato
Context-Aware Stress Monitoring using Wearable and Mobile Technologies in Everyday Settings
在日常环境中使用可穿戴和移动技术进行情境感知压力监测
  • DOI:
    10.1101/2023.04.20.23288181
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. A. H. Aqajari;S. Labbaf;Phuc Hoang Tran;Brenda Nguyen;Milad Asgari Mehrabadi;Marco Levorato;N. Dutt;Amir M. Rahmani
  • 通讯作者:
    Amir M. Rahmani
Enhancing Privacy in Federated Learning via Early Exit
通过提前退出增强联邦学习中的隐私
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yashuo Wu;C. Chiasserini;F. Malandrino;Marco Levorato
  • 通讯作者:
    Marco Levorato
Assessing the Reliability of Different Split Computing Neural Network Applications
评估不同分割计算神经网络应用的可靠性
Evaluating the Reliability of Supervised Compression for Split Computing
评估分割计算的监督压缩的可靠性

Marco Levorato的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marco Levorato', 18)}}的其他基金

Collaborative Research: NeTS: Small: Reliable Task Offloading in Mobile Autonomous Systems Through Semantic MU-MIMO Control
合作研究:NeTS:小型:通过语义 MU-MIMO 控制实现移动自治系统中的可靠任务卸载
  • 批准号:
    2134567
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
S&AS: FND: Cognitive and Reflective Monitoring Systems for Urban Environments
S
  • 批准号:
    1724331
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Multi-Scale Analysis and Control of Smart Energy Systems
智能能源系统的多尺度分析与控制
  • 批准号:
    1611349
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

磷脂酶Ultra特异性催化油脂体系中微量磷脂分子的调控机制研究
  • 批准号:
    31471690
  • 批准年份:
    2014
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
适应纳米尺度CMOS集成电路DFM的ULTRA模型完善和偏差模拟技术研究
  • 批准号:
    60976066
  • 批准年份:
    2009
  • 资助金额:
    41.0 万元
  • 项目类别:
    面上项目

相似海外基金

Enabling Sustainable Ultra Reliable Computing and Communications over 5G+ Wireless Technologies
通过 5G 无线技术实现可持续的超可靠计算和通信
  • 批准号:
    561415-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Alliance Grants
NeTS: JUNO3: Cloud-Carrier Cooperation for Efficient and Ultra-Reliable Programmable Backbone Networks
NetS:JUNO3:云运营商合作打造高效、超可靠的可编程骨干网络
  • 批准号:
    2210384
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Advanced wireless communications for ultra-reliable, green, and secure Internet of Things
先进的无线通信,实现超可靠、绿色和安全的物联网
  • 批准号:
    RGPIN-2019-06868
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Enabling Sustainable Ultra Reliable Computing and Communications over 5G+ Wireless Technologies
通过 5G 无线技术实现可持续的超可靠计算和通信
  • 批准号:
    561415-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Alliance Grants
Cross-layer Design for Ultra-reliable Low-latency Communications
跨层设计,实现超可靠低延迟通信
  • 批准号:
    DE210100415
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Early Career Researcher Award
Advanced wireless communications for ultra-reliable, green, and secure Internet of Things
先进的无线通信,实现超可靠、绿色和安全的物联网
  • 批准号:
    RGPIN-2019-06868
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
New secure ultra-reliable and low latency Data Link for UAV (SUREAL)
适用于无人机的新型安全、超可靠、低延迟数据链路 (SUREAL)
  • 批准号:
    96546
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    BEIS-Funded Programmes
Ultra-Reliable and Low-Latency for Vehicle-to-Everything (V2X) Communications
超可靠、低延迟的车联网 (V2X) 通信
  • 批准号:
    2619790
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Ultra-reliable power electronics system with built-in power device degradation diagnosis technology
内置功率器件退化诊断技术的超可靠电力电子系统
  • 批准号:
    20H02134
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Advanced wireless communications for ultra-reliable, green, and secure Internet of Things
先进的无线通信,实现超可靠、绿色和安全的物联网
  • 批准号:
    RGPIN-2019-06868
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了