Microfluidics production of self-amplifying RNA-based therapeutics vaccine
基于 RNA 的自扩增治疗疫苗的微流控生产
基本信息
- 批准号:2597270
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Summary: THERAPEUTIC-SAM@SCALE will support the UK Manufacturing strategy to build on the technology developed for COVID-19 self-amplifying RNA vaccines. We will identify the key material and manufacturing variables that must be considered for self-amplifying RNA therapeutic vaccines for cancer. This will be transferred to GMP manufacturing scale and validated in vivo. Through this process we will support the national and international supply of novel thermostable vaccine systems. Background: In response to COVID-19, Perrie has been working with the UK Government Vaccine Task Force to support the manufacture of a COVID-19 self-amplifying RNA vaccine. RNA-based vaccines combine the positive attributes of both live-attenuated and subunit vaccines. However, these RNA vaccines are only effective when formulated within a nanoparticle delivery system, and lipid nanoparticles (LNPs) has been adopted for the current COVID-19 vaccines. Lipid nanoparticles protect the RNA against degradation, facilitate endosomal escape and cell specific targeting, and can be co-delivered with adjuvants. Furthermore, they have the potential to be manufactured in a scale-independent manner. Given the positive responses being demonstrated with these vaccines, this project will now apply this technology to therapeutic vaccines. A therapeutic vaccine is one in which the vaccine is used after infection occurs, aiming to induce immunity to alter the course of disease. However, the situation is more complicated when developing therapeutic cancer vaccines. Unlike bacteria and viruses that are generally recognised as foreign to our immune system, cancer cells more closely resemble our normal, healthy cells. Furthermore, tumours are generally unique to the individual and have their own distinguishing antigens. As a result, to develop effective therapeutic cancer vaccines, personalisation of the vaccine is needed. The use of self-amplifying RNA vaccines can address this through the rapid sequencing of the DNA within tumour cells to identify unique cancer peptides. These peptides can in turn be coded within self-amplifying RNA and incorporated into RNA vaccines. Challenge: The current method for manufacturing lipid nanoparticles is an ethanol injection method; this batch production method involves multi-unit operations (up to 18) with the entire production being carried out in an aseptic area. The complexity is immense and hence scale up and technology transfer is a major challenge. We will now develop this technology to develop therapeutic vaccines for the treatment of cancer and we will investigate formulations to address thermo-instabilities currently associated with SAM-LNP vaccines.Addressing the Challenge: This project aims to develop thermostable SAM-LNPs which can be manufactured using flexible and adaptive processes, which can be scaled up and down in a rapidly responsive mode. To achieve this, the objectives are: 1) investigate the role of lipid section in controlling vaccine efficacy of SAM-LNP vaccines, 2) format a thermostable vaccine system by exploiting the freeze-drying protocols and 3) develop innovative microfluidic and inline monitoring processes to create continuous manufacturing options for SAM-LNP vaccines.
摘要:Treatative-SAM@Scale将支持英国制造战略,以新冠肺炎自扩增核糖核酸疫苗开发的技术为基础。我们将确定自我放大的癌症RNA治疗性疫苗必须考虑的关键材料和制造变量。这将转移到GMP生产规模并在体内验证。通过这一进程,我们将支持国内和国际供应新型耐热疫苗系统。背景:作为对新冠肺炎的回应,佩里一直与英国政府疫苗工作组合作,支持新冠肺炎自我放大核糖核酸疫苗的制造。基于RNA的疫苗结合了减毒活疫苗和亚单位疫苗的积极属性。然而,这些RNA疫苗只有在纳米颗粒递送系统内配制时才有效,目前的新冠肺炎疫苗已采用脂质纳米颗粒(LNPs)。脂质纳米粒保护RNA免受降解,促进内体逃逸和细胞特异性靶向,并可与佐剂共传递。此外,它们有可能以与规模无关的方式制造。鉴于这些疫苗表现出的积极反应,该项目现在将把这项技术应用于治疗性疫苗。治疗性疫苗是一种在感染发生后使用疫苗的疫苗,旨在诱导免疫以改变病程。然而,当开发治疗性癌症疫苗时,情况就更加复杂了。与通常被认为是免疫系统外来的细菌和病毒不同,癌细胞与我们正常、健康的细胞更相似。此外,肿瘤通常是个体独有的,并有自己独特的抗原。因此,为了开发有效的治疗性癌症疫苗,需要对疫苗进行个性化。使用自我放大的RNA疫苗可以通过对肿瘤细胞内的DNA进行快速测序来识别独特的癌肽来解决这一问题。这些多肽可以被编码在自我放大的RNA中,并被整合到RNA疫苗中。挑战:目前制造脂质纳米粒的方法是乙醇注射法;这种批量生产方法涉及多个单元操作(最多18个),整个生产都在无菌区域进行。复杂性是巨大的,因此扩大规模和技术转让是一个重大挑战。我们现在将开发这项技术来开发用于癌症治疗的治疗性疫苗,我们将研究解决目前与SAM-LNP疫苗相关的热不稳定问题的配方。应对挑战:该项目旨在开发耐热的SAM-LNP,它可以使用灵活和适应性的工艺制造,可以快速响应模式放大和缩小。为了实现这一目标,目标是:1)研究脂质部分在控制SAM-LNP疫苗效力中的作用,2)利用冷冻干燥方案形成耐热疫苗系统,3)开发创新的微流控和在线监测工艺,以创造SAM-LNP疫苗的连续生产选择。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
交货期敏感的单件模式产品供应链的协调优化
- 批准号:70871060
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:面上项目
供应链中生产和配送联合排序和调度的模型、算法及应用
- 批准号:70372058
- 批准年份:2003
- 资助金额:14.0 万元
- 项目类别:面上项目
相似海外基金
Strategies to predict and overcome resistance to cancer immunotherapy
预测和克服癌症免疫治疗耐药性的策略
- 批准号:
10638167 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Investigating hematopoietic stem cell dysfunction during sickle cell disease
研究镰状细胞病期间的造血干细胞功能障碍
- 批准号:
10681829 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Clinical and Translational Science Collaborative of Northern Ohio, An Intensive Summer Education Program in Translational Research for Underrepresented Students (INSPIRE-US)
俄亥俄州北部的临床和转化科学合作组织,针对代表性不足的学生的转化研究强化暑期教育项目 (INSPIRE-US)
- 批准号:
10703730 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Optimization of a Self-Adjuvanting Particle System for Delivering Respiratory Syncytial Virus Prefusion Protein
用于输送呼吸道合胞病毒预融合蛋白的自我辅助颗粒系统的优化
- 批准号:
10666079 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Regulation and functional contribution of hypothalamic modified adult hippocampal neurogenesis
下丘脑修饰成人海马神经发生的调节和功能贡献
- 批准号:
10753956 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Lung developmental defects caused by type I collagen mutations in mouse models of osteogenesis imperfecta
成骨不全小鼠模型中 I 型胶原蛋白突变引起的肺发育缺陷
- 批准号:
10735577 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Development of a Piezoelectric Intramedullary Nail for Enhanced Fracture Healing
开发用于增强骨折愈合的压电髓内钉
- 批准号:
10759862 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Inducing Off-pathway Assembly of HIV Gag Polyprotein with Computationally Designed Peptides
用计算设计的肽诱导 HIV Gag 多蛋白的非途径组装
- 批准号:
10724495 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Mechanism of the short- and long-term effects of COVID-19-induced Alarmins on hematopoietic stem and progenitor cells.
COVID-19诱导的警报素对造血干细胞和祖细胞的短期和长期影响的机制。
- 批准号:
10836902 - 财政年份:2023
- 资助金额:
-- - 项目类别: