A-EYE: Integrating In-silico Modelling and Deep Learning to Optimize Diagnosis and Treatment of Wet Age-related Macular Degeneration

A-EYE:整合计算机建模和深度学习来优化湿性年龄相关性黄斑变性的诊断和治疗

基本信息

  • 批准号:
    2599504
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Age-related macular degeneration (AMD) is one of the leading causes of blindness. In its 'wet' form, abnormal new vessels grow in the retina, causing bleeding, scarring and physical deformation of the retinal structure. The macula being the part of the eye responsible for high resolution, central vision, this disruption of the retinal structure is particularly detrimental to vision. Currently, treatment for wet AMD consists of intravitreal injections of a molecule inhibiting growth of the neovasculature. Regardless of how much of a revolution this kind of therapy has been for conserving sight, it does not address the underlying cause of wet AMD and therefore injections must be repeated often, representing a substantial burden for the patient and cost for the health care system. Furthermore, patients respond very differently to the treatment.Optical Coherence Tomography Angiography (OCTA) is a novel, quick, non-invasive, and high-resolution tool for imaging the retinal vasculature. OCTA allows novel insight into the retinal microvasculature in healthy and diseased eyes. It is becoming increasingly used as a diagnostic tool for wet AMD. One of the applications of OCTA is to classify neovasculatures into subtypes which have different response to the current treatment. Additionally, OCTA provides a three-dimensional representation of the retina, its vasculature, and the blood flow therein. The three-dimensional information has been shown to provide more efficient biomarkers (e.g., abnormal fluid volumes) than the previous two-dimensional information (e.g., central retinal thickness) [1].Despite its extensive use in medical imaging, deep learning methods and in particular convolutional neuron networks (CNN) have yet to be applied to classifying neovasculatures from OCTA scans and is one of the goals of this PhD project. Additional novelty will be in the use of three-dimensional segmentations of the microvasculature as an input for the algorithm. Furthermore, the learning algorithm will be informed by computed parameters of the vasculature from our in-silico models to potentially improve its accuracy and explainability, two of the major challenges inherent to artificial intelligence. Currently, most research has been focussing on learning from data, with little work on computer simulations (I.e., in-silico models) of the physiology. Such models rely on physiologically informed assumptions and mathematical equations to provide understanding of the, possibly nonlinear, relationships at work within a system [2]. Furthermore, they allow for quick, inexpensive experiments 'in-silico' which are an efficient tool for trials of new treatment protocols. The function of retinal blood flow in the retina in both healthy and diseased eyes will be investigated in-silico. Later, blood flow and metabolic response will be combined in models of the diseased eye to investigate patient's responsiveness to treatment and explore the possibilities for new treatment regime and new therapy modalities. As part of this, a pipeline (see Fig. 1) will be developed to go from OCTA images, to segmented vasculature, to personalised in-silico models of blood flow and drug treatment [3].Clinical data will be collected from the St Paul's Eye Unit work at the Royal Liverpool University Hospital. The close collaboration with the ophthalmic team is essential for the development of accurate models as well as maintaining a degree of translatability into the clinic.
黄斑变性(AMD)是导致失明的主要原因之一。在其“湿”形式中,异常的新血管在视网膜中生长,导致视网膜结构的出血、瘢痕和物理变形。黄斑是眼睛的一部分,负责高分辨率,中心视力,视网膜结构的这种破坏对视力特别有害。目前,湿性AMD的治疗包括玻璃体内注射抑制新血管生长的分子。无论这种疗法对于保护视力有多大的革命性,它都没有解决湿性AMD的根本原因,因此必须经常重复注射,这对患者来说是一个巨大的负担,对医疗保健系统来说是一个巨大的成本。光学相干断层血管成像(Optical Coherence Tomography Angiography,OCTA)是一种新型、快速、无创、高分辨率的视网膜血管成像工具。OCTA允许对健康和患病眼睛的视网膜微血管系统进行新的了解。它越来越多地被用作湿性AMD的诊断工具。OCTA的应用之一是将新生血管分类为对当前治疗具有不同反应的亚型。另外,OCTA提供视网膜、其脉管系统和其中的血流的三维表示。三维信息已经显示出提供更有效的生物标志物(例如,异常流体体积)比先前的二维信息(例如,尽管深度学习方法在医学成像中得到了广泛的应用,但深度学习方法,特别是卷积神经元网络(CNN)尚未应用于对OCTA扫描的新生血管进行分类,这也是该博士项目的目标之一。额外的新奇将是在使用三维分割的微血管作为输入的算法。此外,学习算法将由我们的计算机模型计算的血管参数提供信息,以潜在地提高其准确性和可解释性,这是人工智能固有的两个主要挑战。目前,大多数研究都集中在从数据中学习,很少有计算机模拟方面的工作(即,计算机模拟模型)。这种模型依赖于生理学上的假设和数学方程,以提供对系统内工作的可能非线性关系的理解[2]。此外,它们允许快速,廉价的实验“计算机”,这是一个有效的工具,用于试验新的治疗方案。将通过计算机模拟研究健康和患病眼睛中视网膜中视网膜血流的功能。之后,将在患病眼睛的模型中结合血流和代谢反应,以研究患者对治疗的反应,并探索新治疗方案和新治疗方式的可能性。作为该项目的一部分,将开发一个管道(见图1),从OCTA图像到分割的血管系统,再到血流和药物治疗的个性化计算机模拟模型[3]。临床数据将从皇家利物浦大学医院的圣保罗眼科中心收集。与眼科团队的密切合作对于开发准确的模型以及保持一定程度的可翻译性到临床至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Toxicology-testing platform integrating immunocompetent in vitro/ex vivo modules with real-time sensing and machine learning based in silico models for life cycle assessment and SSbD
毒理学测试平台,将免疫活性体外/离体模块与基于硅模型的实时传感和机器学习相结合,用于生命周期评估和 SSbD
  • 批准号:
    10100967
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Integrating cell identities and morphodynamics through extracellular cues
通过细胞外线索整合细胞身份和形态动力学
  • 批准号:
    10644461
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Improving Diagnosis in Gastrointestinal Cancer: Integrating Prediction Models into Routine Clinical Care
改善胃肠癌的诊断:将预测模型纳入常规临床护理
  • 批准号:
    10641060
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Strengthening perinatal healthcare utilization and quality of care for Indigenous and low socioeconomic status women through systems change: integrating person, provider, and policy perspectives.
通过系统变革,加强对土著和低社会经济地位妇女的围产期保健利用和护理质量:整合个人、提供者和政策观点。
  • 批准号:
    10748659
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Extending experimental evolutionary game theory in cancer in vivo to enable clinical translation: integrating spatio-temporal dynamics using mathematical modeling
扩展癌症体内实验进化博弈论以实现临床转化:使用数学建模整合时空动力学
  • 批准号:
    10662098
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
ToxIndex-CPG: Machine learning driven platform integrating a hazard susceptibility database to quantify chemical toxicity factors, predict risk levels and classify biological responses
ToxIndex-CPG:机器学习驱动的平台,集成危害敏感性数据库,以量化化学毒性因素、预测风险水平并对生物反应进行分类
  • 批准号:
    10377742
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Integrating in vivo and in silico models of prostate cancer-bone interactions to overcome anti-tumor therapy resistance
整合前列腺癌-骨相互作用的体内和计算机模型以克服抗肿瘤治疗耐药性
  • 批准号:
    10669771
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Integrating KCNH2 Variant-Specific Features and Heterozygote Phenotypes to Estimate Long QT Penetrance
整合 KCNH2 变体特异性特征和杂合子表型来估计长 QT 外显率
  • 批准号:
    10557122
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Integrating in vivo and in silico models of prostate cancer-bone interactions to overcome anti-tumor therapy resistance
整合前列腺癌-骨相互作用的体内和计算机模型以克服抗肿瘤治疗耐药性
  • 批准号:
    10525319
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
muMS2: an open source R package for analyzing and integrating multi-omics datasets to improve early detection and understanding of colorectal cancer
muMS2:一个开源 R 包,用于分析和集成多组学数据集,以改善结直肠癌的早期检测和理解
  • 批准号:
    10415579
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了