N-point motions in Random Dynamical Systems
随机动力系统中的 N 点运动
基本信息
- 批准号:2602126
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Random dynamical systems combine classical, deterministic, mathematical models designed to capture the governing essence of a system, i.e. its main driving forces, together with external stochastic fluctuations known as noise, providing us with a significantly more realistic framework to describe a wide range of processes [1]. In order to study these systems, robust analytical tools have been developed from stochastic analysis, ergodic theory and more recently bifurcation theory, allowing not only for a statistical explanation of the model but also for a dynamical path-wise interpretation of its behavior.In this setting, we focus on the study of several (n) particles within a random dynamical system, which we refer to as the n-point motion, to go beyond the usual single-point, statistical, and probabilistic description of a model. Starting with the two-point motion, in the case of stochastic differential equations and particularly for stochastic flows of diffeomorphisms, it was shown by H. Kunita in 1990 [2] that the law of the process is fully characterized by the two-point motion, or in other words that knowledge of the dynamics of any two particles evolving within the system yields a full description of the flow. Indeed, the study of the two-point motion in random dynamical systems is also crucial for the description of synchronization and closely relates to fundamental notions in the field such as Lyapunov exponents or the system's entropy amongst others.More recently, Homburg et al. have observed a close link between the bifurcations on the invariant measure of the two-point motion and phase transitions that provide a much richer understanding of the underlying system and its dynamics. However, a complete theory able to describe this topic is yet to be developed.The aim of this project is to identify and analyze such novel mechanisms, as we access the hidden information behind the two-point motion's dynamics, and continue by building towards a full description of the system's n-point motion, uncovering the properties of such complex models.This project falls within the EPSRC statistics and applied probability, and non-linear systems research areas.
随机动力系统结合了经典的确定性数学模型,旨在捕捉系统的控制本质,即其主要驱动力,以及称为噪声的外部随机波动,为我们提供了一个更现实的框架来描述大范围的过程[1]。为了研究这些系统,从随机分析、遍历理论和最近的分岔理论中开发出了健壮的分析工具,不仅可以对模型进行统计解释,还可以对其行为进行动态路径解释。在这种情况下,我们专注于研究随机动力系统中的几个(n)个粒子,我们称之为n点运动,以超越通常的单点,统计和概率描述模型。从两点运动开始,在随机微分方程的情况下,特别是对于微分同态的随机流动,H. Kunita在1990年表明,该过程的规律完全由两点运动表征,或者换句话说,系统内任意两个粒子演化的动力学知识产生了对流动的完整描述。事实上,随机动力系统中两点运动的研究对于同步的描述也是至关重要的,并且与李雅普诺夫指数或系统熵等领域的基本概念密切相关。最近,Homburg等人观察到两点运动不变测量的分岔和相变之间的密切联系,这为底层系统及其动力学提供了更丰富的理解。然而,一个能够描述这一主题的完整理论尚未形成。该项目的目的是识别和分析这种新颖的机制,因为我们访问隐藏在两点运动动力学背后的信息,并继续建立对系统n点运动的完整描述,揭示这种复杂模型的属性。该项目属于EPSRC统计与应用概率和非线性系统研究领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Travel: International Workshop on Numerical Modeling of Earthquake Motions: Waves and Ruptures
旅行:地震运动数值模拟国际研讨会:波浪和破裂
- 批准号:
2346964 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Effect of Reynolds number on drag reduction: from near-wall cycle to large-scale motions.
雷诺数对减阻的影响:从近壁循环到大规模运动。
- 批准号:
2345157 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Establishment of a foundation of the eXplainable AI for sports coaching focusing on repetitious motions
为专注于重复动作的运动教练建立 eXplainable AI 基础
- 批准号:
23K10602 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Understanding How Moist Processes Shape Tropical Motions in Observations and General Circulation Models
职业:了解潮湿过程如何在观测和大气环流模型中塑造热带运动
- 批准号:
2236433 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Microfronts and Other Nocturnal Submeso Motions over Microtopography
微地形上的微锋和其他夜间亚细观运动
- 批准号:
2309208 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Assessment of hip motions and forces using inertial measurement units
使用惯性测量装置评估髋部运动和力
- 批准号:
486869 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Miscellaneous Programs
Advancements to predict local earthquake ground motions with applications in the Kansai region
预测当地地震地面运动的进展及其在关西地区的应用
- 批准号:
23KF0149 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Large-N limit of horizontal Brownian motions on Lie groups
李群上水平布朗运动的大 N 极限
- 批准号:
EP/Y001478/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Study on nonlinear response of liquefiable soils of horizontal bi-directional ground motions for advancement of seismic design
水平双向地震动作用下液化土非线性响应研究促进抗震设计
- 批准号:
23K04013 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Comprehensive data-driven learning, prediction and generation of whole-body contact motions based on cyber-physical human model
基于网络物理人体模型的全面数据驱动的全身接触运动学习、预测和生成
- 批准号:
22H05002 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (S)