Effect of Reynolds number on drag reduction: from near-wall cycle to large-scale motions.

雷诺数对减阻的影响:从近壁循环到大规模运动。

基本信息

  • 批准号:
    2345157
  • 负责人:
  • 金额:
    $ 32.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-03-01 至 2027-02-28
  • 项目状态:
    未结题

项目摘要

The problem of reducing drag on the objects in contact with viscous fluids moving relative to them is of great importance due to high economic and energy benefits associated with such drag reduction. The drag is known to increase when the relative velocity (correspondingly, the Reynolds number of the flow) increases, while many of the common drag reduction techniques are known to lose effectiveness with the increase in Reynolds number. This project will investigate the reasons for this loss of effectiveness and propose new strategies that may potentially overcome this limitation. In particular, a drag reduction mechanism in fluids flowing across a pipe that imparts a certain motion to the walls of the pipe will be considered. A hypothesis that specific parameters (such as frequency and wavelength) of such wall motions significantly influence the drag reduction will be investigated, via high-fidelity computational simulations across the range of Reynolds numbers. The project will also seek to improve the quality of education of fundamental mathematical and physical disciplines for the engineering students, via enhancing the course curriculum, engaging undergraduate students in research, and conducting outreach activities to underrepresented students across the metropolitan Phoenix area.The project will investigate the hypothesis that the loss of performance of some common drag reduction mechanisms with increase in Reynolds number is associated with the increasing influence of large scales which may not be efficiently controlled by conventional drag reduction mechanisms. In particular, the traditional inner-scaled actuation and a less investigated outer-scaled actuation mechanisms will be compared and analyzed on an example of a turbulent pipe flow with streamwise traveling waves of transverse wall velocity as a drag reduction mechanism. Depending on the frequency and the wavelength of a traveling wave, different scales of motions in a turbulent flow will be actuated, and their role in drag reduction depending on the Reynolds number will be quantified. Additionally, a novel approach that targets small and large scales of flow simultaneously, termed a multi-scaled actuation, will be investigated. This new approach promises to overcome the limitations of previously explored methods, especially at high Reynolds number flows. Enhancing the capabilities to reduce skin friction drag at increased Reynolds numbers, approaching the target for realistic applications, will have a strong impact on the world economy, global energy usage, and emission reductions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于与这种减阻相关联的高经济和能量效益,减小与相对于物体运动的粘性流体接触的物体上的阻力的问题是非常重要的。当相对速度(相应地,流动的雷诺数)增加时,已知阻力增加,而已知许多常见的减阻技术随着雷诺数的增加而失去有效性。该项目将调查这种有效性丧失的原因,并提出可能克服这种限制的新策略。特别地,将考虑在流过管道的流体中的减阻机制,该减阻机制向管道的壁赋予一定的运动。通过在雷诺数范围内的高保真计算模拟,将研究这样的壁运动的特定参数(如频率和波长)显着影响减阻的假设。该项目还将通过加强课程设置,让本科生参与研究,该项目将调查以下假设,即随着雷诺数的增加,一些常见的减阻机制的性能损失是这与大尺度的影响的增加有关,而大尺度的影响可能不能被传统的减阻机构有效地控制。特别是,传统的内尺度驱动和较少研究的外尺度驱动机制将进行比较和分析的湍流管流的横向壁速度的流向行波作为减阻机制的例子。根据行波的频率和波长,湍流中不同尺度的运动将被驱动,并且它们在取决于雷诺数的减阻中的作用将被量化。此外,一种新的方法,同时针对小规模和大规模的流动,称为多尺度致动,将进行调查。这种新方法有望克服以前探索的方法的局限性,特别是在高雷诺数流动。在雷诺数增加的情况下提高降低表面摩擦阻力的能力,接近实际应用的目标,将对世界经济、全球能源使用和减排产生重大影响。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yulia Peet其他文献

Yulia Peet的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yulia Peet', 18)}}的其他基金

Collaborative Research: Dust Entrainment Processes by Convective Vortices and Localized Turbulent Structures: Experimental and Numerical Study
合作研究:对流涡旋和局部湍流结构的粉尘夹带过程:实验和数值研究
  • 批准号:
    2207115
  • 财政年份:
    2022
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Standard Grant
CAREER: Interaction of Turbulence with Flexible Surfaces: Coherent Structures and Near-Wall Dynamics
职业:湍流与柔性表面的相互作用:相干结构和近壁动力学
  • 批准号:
    1944568
  • 财政年份:
    2020
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Continuing Grant
Understanding Bio-Locomotion for Collective Swimming in a Quiet and Disturbed Media
了解在安静和受干扰的介质中集体游泳的生物运动
  • 批准号:
    1762827
  • 财政年份:
    2018
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Standard Grant
Improving Statistical Convergence in Direct Numerical Simulations by Exploring Large-Scale Structures Organization and Symmetry
通过探索大规模结构组织和对称性来提高直接数值模拟中的统计收敛性
  • 批准号:
    1707075
  • 财政年份:
    2017
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Standard Grant
Wind Turbine Array Performance Based on Coupling CFD with Doppler Lidar Measurements
基于 CFD 与多普勒激光雷达测量耦合的风力涡轮机阵列性能
  • 批准号:
    1335868
  • 财政年份:
    2013
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Standard Grant
Multidomain and Integrative Capabilities for Large-Scale Systems Simulations with High-Order Methods
使用高阶方法进行大规模系统仿真的多域和集成功能
  • 批准号:
    1250124
  • 财政年份:
    2012
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Standard Grant

相似国自然基金

Cocycle Hopf 代数和 Reynolds 算子的研究
  • 批准号:
    11861051
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

TENSOR: Turbulent boundary layer and trailing Edge Noise Study Of flow past a porous surface at high Reynolds number
张量:高雷诺数下流过多孔表面的湍流边界层和后缘噪声研究
  • 批准号:
    EP/X032590/1
  • 财政年份:
    2023
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Fellowship
Study on liquid water content fluctuation in high Reynolds number turbulence with large-scale mixing in convective clouds
对流云大尺度混合高雷诺数湍流中液态水含量波动研究
  • 批准号:
    23K03686
  • 财政年份:
    2023
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Towards understanding transition mechanism and application to heat transfer enhancement of elasto-inertia turbulence at low Reynolds number based on vortex modulation
基于涡旋调制的低雷诺数弹惯性湍流传热强化的理解和应用
  • 批准号:
    23K19093
  • 财政年份:
    2023
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Universal statistical laws in the small scales of high-Reynolds-number turbulence
小尺度高雷诺数湍流中的普遍统计定律
  • 批准号:
    23K03245
  • 财政年份:
    2023
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Experimental and computational investigation of low Reynolds number Shock / Boundary Layer Interaction (SBLI)
低雷诺数冲击/边界层相互作用 (SBLI) 的实验和计算研究
  • 批准号:
    2908406
  • 财政年份:
    2022
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Studentship
Computational Aeroacoustic Prediction of Low Reynolds Number Airfoil Self-Noise
低雷诺数翼型自噪声的计算气动声学预测
  • 批准号:
    558763-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Lifting surfaces in low Reynolds number flows: bridging the gap between laboratory research and practice
低雷诺数流中的升力面:弥合实验室研究与实践之间的差距
  • 批准号:
    RGPIN-2022-03352
  • 财政年份:
    2022
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Discovery Grants Program - Individual
Clarification of airfoil characteristics in compressible and critical Reynolds number flows
澄清可压缩和临界雷诺数流中的翼型特性
  • 批准号:
    22H01685
  • 财政年份:
    2022
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Improving aerodynamic control strategies for low Reynolds number airfoils
改进低雷诺数翼型的气动控制策略
  • 批准号:
    RGPIN-2022-03071
  • 财政年份:
    2022
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Scaling of ciliary flows at intermediate Reynolds number
合作研究:中间雷诺数纤毛流的缩放
  • 批准号:
    2120505
  • 财政年份:
    2021
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了