Streaming Estimation for the Spectral Density"
谱密度的流式估计"
基本信息
- 批准号:2602530
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Recent technological innovations have resulted in a large increase in both data generation and data collection capabilities in many application areas, especially given the many advances in real-time information capture. Classical approaches for analysis and modelling require the data to be stored and read before it can be processed. Depending on the speed at which the data is being collected, this could result in our algorithms and models requiring a prohibitive amount of memory and computational power. Furthermore, in real world applications, the data generating process has the possibility of undergoing changes as the data is being collected. This presents another shortcoming of classical algorithms. They usually have a baked-in assumption that the generating process does not change and thus are unsuited for the task once we relax this assumption.This project falls within the EPSRC research areas for Digital Signal Processing, Statistics and Applied probability. We aim to develop methodology designed to process high frequency data, while also retaining a level of adaptability that allows us to deal with changes in the underlying random process. These methods will enable the analysis of time series as they are being observed and thus give us the ability to react to changes in real time. This is particularly useful in areas such as cyber-security, where anomalous behaviour deviating from the norm needs to be detected and investigated as soon as possible. Such a problem involves having the best possible up-to-date estimate for what the norm is, while also being able to judge any given set of datapoints as anomalous.In this project, we plan to develop methodology specifically aimed at estimating the spectral density of a time series as it evolves during the data collection process. With the spectral density capturing the vast majority of the information regarding a random data generating process, these algorithms would enable us to track changes in both the long-term seasonality and the short-term trends. Areas of current focus are non-parametric change-point detection and multivariate time series analysis. The latter we plan to extend by incorporating graph prediction and network analysis. At present, seasonality has rarely been used to analyse the underlying structure of a network. In our work we look to address this shortcoming in the literature and develop new tools for network analysis. To maximise the impact of our work, we will also develop open-source software - with documentation and demonstrations - that we will share online.
最近的技术创新大大提高了许多应用领域的数据生成和数据收集能力,特别是在实时信息采集方面取得了许多进展。传统的分析和建模方法需要在处理数据之前存储和读取数据。根据收集数据的速度,这可能导致我们的算法和模型需要大量的内存和计算能力。此外,在真实的应用中,数据生成过程有可能在收集数据时发生变化。这是经典算法的另一个缺点。他们通常有一个固定的假设,即生成过程不会改变,因此一旦我们放松这个假设,就不适合这项任务。这个项目福尔斯EPSRC数字信号处理,统计和应用概率的研究领域。我们的目标是开发旨在处理高频数据的方法,同时也保留一定的适应性,使我们能够处理潜在的随机过程中的变化。这些方法将使我们能够在观察到时间序列时对其进行分析,从而使我们能够对真实的时间变化作出反应。这在网络安全等领域特别有用,因为需要尽快发现和调查偏离规范的异常行为。这样的问题涉及到有最好的最新估计的规范是什么,同时也能够判断任何给定的一组数据点为abnormal.In这个项目中,我们计划开发的方法,专门针对估计的频谱密度的时间序列,因为它在数据收集过程中的演变。由于谱密度捕获了关于随机数据生成过程的绝大多数信息,这些算法将使我们能够跟踪长期季节性和短期趋势的变化。目前的重点领域是非参数变点检测和多变量时间序列分析。我们计划通过结合图形预测和网络分析来扩展后者。目前,季节性很少被用来分析网络的基本结构。在我们的工作中,我们希望解决文献中的这一缺陷,并开发新的网络分析工具。为了最大限度地发挥我们工作的影响力,我们还将开发开源软件-包括文档和演示-我们将在网上分享。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Estimation of spectral properties for discovery of latent structures in dynamic graphs
估计光谱特性以发现动态图中的潜在结构
- 批准号:
2904452 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Optimization of Markov Chain Monte Carlo Schemes with Spectral Gap Estimation
具有谱间隙估计的马尔可夫链蒙特卡罗方案优化
- 批准号:
2311307 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Precise 3-D remote sensing using multi-spectral image estimation and accurate 3-D reconstruction
使用多光谱图像估计和精确的 3D 重建进行精确的 3D 遥感
- 批准号:
20K06319 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving tissue oxygenation estimation using photoacoustic spectral analysis
使用光声光谱分析改进组织氧合估计
- 批准号:
391588 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Asymptotics and concentration in spectral estimation for large matrices
大矩阵谱估计中的渐近和集中
- 批准号:
1509739 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
CIF: Small: Adaptive Spectral Estimation and Error Bounding
CIF:小:自适应频谱估计和误差界限
- 批准号:
1218388 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
Estimation of noise in the multispectral camera and recovery of spectral reflectance
多光谱相机中的噪声估计和光谱反射率的恢复
- 批准号:
23500235 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Verification of Velocity structures estimation in a irregular subsurface structure using the microtremor H/V spectral method
使用微震 H/V 谱方法验证不规则地下结构中的速度结构估计
- 批准号:
23560670 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)