Asymptotics and concentration in spectral estimation for large matrices
大矩阵谱估计中的渐近和集中
基本信息
- 批准号:1509739
- 负责人:
- 金额:$ 28.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Estimation of large matrices and their spectral characteristics is crucial in a variety of problems of science and engineering that deal with large high-dimensional data sets. Spectral methods are of the utmost importance in kernel machine learning, manifold learning, functional data analysis, community detection in large networks, quantum statistics and quantum information, and many other applications. The purpose of the project is to develop new mathematical tools needed in analysis of high-dimensional and infinite-dimensional matrix estimation problems that could potentially lead to more powerful methods of statistical inference for complex, high-dimensional data. The project also includes a number of activities with an impact on graduate education and on research collaborations between statistics, computer science and other areas.The focus of the project is on concentration properties and asymptotics of spectral characteristics (eigenvalues, eigenvectors, spectral projectors) of several important classes of random matrices and operators playing crucial role in high dimensional and infinite dimensional statistical inference and in machine learning. They include sample covariance operators, kernel matrices in machine learning, empirical heat kernels and Laplacians for manifold data, matrices involved in spectral clustering problems on graphs, matrix estimators in trace regression problems (such as matrix completion and quantum state tomography). The main goal is to study the problems where there exists an operator norm consistent estimator of the target matrix (operator), but it converges at a slow rate and to develop a broad range of concentration bounds and asymptotic results for specific functionals of the underlying random matrix (operator) such as its eigenvalues, bilinear forms of its spectral projection operators, norms of deviations of empirical spectral projection operators from their true counterparts. The solution of these problems relies on further development of the methods of high-dimensional probability, such as concentration inequalities, generic chaining bounds for Gaussian, empirical and related classes of stochastic processes, non-asymptotic bounds for random matrices.
大型矩阵及其谱特征的估计在处理大型高维数据集的各种科学和工程问题中至关重要。谱方法在核机器学习、流形学习、函数数据分析、大型网络中的社区检测、量子统计和量子信息以及许多其他应用中至关重要。该项目的目的是开发分析高维和无限维矩阵估计问题所需的新数学工具,这些工具可能会导致更强大的复杂高维数据统计推断方法。该项目还包括一些对研究生教育和统计学、计算机科学和其他领域之间的研究合作产生影响的活动。该项目的重点是光谱特性的浓度性质和渐近性(特征值,特征向量,光谱投影仪)几类重要的随机矩阵和算子在高维和无穷维统计推断中起着至关重要的作用,机器学习它们包括样本协方差算子,机器学习中的核矩阵,流形数据的经验热核和拉普拉斯算子,图上谱聚类问题中涉及的矩阵,迹回归问题中的矩阵估计(如矩阵完成和量子态层析成像)。主要目的是研究目标矩阵存在算子范数相合估计的问题(算子),但它收敛速度慢,并制定了广泛的浓度界和渐近结果的具体泛函的基础随机矩阵(算子),如其特征值,其谱投影算子的双线性形式,经验谱投影算子与其真实对应算子的偏差的范数。这些问题的解决依赖于高维概率方法的进一步发展,如浓度不等式,高斯,经验和相关类的随机过程,随机矩阵的非渐近界的一般链接的界限。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vladimir Koltchinskii其他文献
THÈSE DE DOCTORAT ÈS MATHÉMATIQUES
数学博士论文
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Bodhisattva Sen;Richard Nickl;Vladimir Koltchinskii;Philippe Rigollet;Arnak S. Dalalyan - 通讯作者:
Arnak S. Dalalyan
Applications of Statistical-Learning Methods in Systems and Control
- DOI:
10.1016/s1474-6670(17)41618-1 - 发表时间:
2001-08-01 - 期刊:
- 影响因子:
- 作者:
Marco Ariola;Chaouki T. Abdallah;Vladimir Koltchinskii - 通讯作者:
Vladimir Koltchinskii
Vladimir Koltchinskii的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vladimir Koltchinskii', 18)}}的其他基金
Estimation of Functionals of High-Dimensional Parameters of Statisical Models
统计模型高维参数泛函的估计
- 批准号:
2113121 - 财政年份:2021
- 资助金额:
$ 28.94万 - 项目类别:
Standard Grant
Estimation of Smooth Functionals of Covariance and Other Parameters of High-Dimensional Models
高维模型协方差和其他参数的平滑泛函的估计
- 批准号:
1810958 - 财政年份:2018
- 资助金额:
$ 28.94万 - 项目类别:
Standard Grant
Probability Theory and Statistics in High and Infinite Dimensions: Empirical Processes Theory and Beyond
高维和无限维中的概率论和统计:经验过程理论及其他
- 批准号:
1407649 - 财政年份:2014
- 资助金额:
$ 28.94万 - 项目类别:
Standard Grant
Complexity Penalization in High Dimensional Matrix Estimation Problems
高维矩阵估计问题中的复杂度惩罚
- 批准号:
1207808 - 财政年份:2012
- 资助金额:
$ 28.94万 - 项目类别:
Continuing Grant
Complexity Regularization in Statistical Learning Theory
统计学习理论中的复杂性正则化
- 批准号:
0906880 - 财政年份:2009
- 资助金额:
$ 28.94万 - 项目类别:
Standard Grant
MSPA-MCS: Sparsity in High-Dimensional Learning Problems
MSPA-MCS:高维学习问题的稀疏性
- 批准号:
0624841 - 财政年份:2006
- 资助金额:
$ 28.94万 - 项目类别:
Standard Grant
Probabilistic and Statistical Methods in Machine Learning
机器学习中的概率和统计方法
- 批准号:
0304861 - 财政年份:2004
- 资助金额:
$ 28.94万 - 项目类别:
Standard Grant
相似国自然基金
杂交稻产量形成对大气CO2和O3浓度升高响应的研究
- 批准号:31071359
- 批准年份:2010
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Using Multi-Spectral Imaging with Microchip Electrophoresis to Accurately Screen Newborns for Sickle Cell Disease
使用多光谱成像和微芯片电泳准确筛查新生儿镰状细胞病
- 批准号:
10255480 - 财政年份:2021
- 资助金额:
$ 28.94万 - 项目类别:
Collaborative Research: Microlocal Concentration and Propagation in Spectral Theory
合作研究:谱理论中的微局域集中和传播
- 批准号:
1900519 - 财政年份:2019
- 资助金额:
$ 28.94万 - 项目类别:
Continuing Grant
Collaborative Research: Microlocal Concentration and Propagation in Spectral Theory
合作研究:谱理论中的微局域集中和传播
- 批准号:
1900434 - 财政年份:2019
- 资助金额:
$ 28.94万 - 项目类别:
Standard Grant
Tracking Metals From E-cigarettes: From The Coil Into Lung Tissue
追踪电子烟中的金属:从线圈到肺组织
- 批准号:
9788461 - 财政年份:2018
- 资助金额:
$ 28.94万 - 项目类别:
Spectral precision imaging for early diagnosis of colorectal lesions with CT colonography
CT结肠成像光谱精密成像用于结直肠病变的早期诊断
- 批准号:
10308462 - 财政年份:2017
- 资助金额:
$ 28.94万 - 项目类别:
Spectral precision imaging for early diagnosis of colorectal lesions with CT colonography
CT结肠成像光谱精密成像用于结直肠病变的早期诊断
- 批准号:
10054168 - 财政年份:2017
- 资助金额:
$ 28.94万 - 项目类别:
Developing a spectral inference model to track trends in cyanobacterial pigment concentration
开发光谱推断模型来跟踪蓝藻色素浓度的趋势
- 批准号:
452881-2013 - 财政年份:2015
- 资助金额:
$ 28.94万 - 项目类别:
Industrial R&D Fellowships (IRDF)
Developing a spectral inference model to track trends in cyanobacterial pigment concentration
开发光谱推断模型来跟踪蓝藻色素浓度的趋势
- 批准号:
452881-2013 - 财政年份:2014
- 资助金额:
$ 28.94万 - 项目类别:
Industrial R&D Fellowships (IRDF)
Developing a spectral inference model to track trends in cyanobacterial pigment concentration
开发光谱推断模型来跟踪蓝藻色素浓度的趋势
- 批准号:
452881-2013 - 财政年份:2013
- 资助金额:
$ 28.94万 - 项目类别:
Industrial R&D Fellowships (IRDF)
Study on Monitoring System of Chlorophyll-a Concentration and Water Temperature in Lake using NOAA/AVHRR Observed Data
利用NOAA/AVHRR观测数据监测湖泊叶绿素a浓度和水温的系统研究
- 批准号:
12555146 - 财政年份:2000
- 资助金额:
$ 28.94万 - 项目类别:
Grant-in-Aid for Scientific Research (B)