Man, Machine, and Mathematics: A mathe-physical search for differential equation solutions via deep learning

人、机器和数学:通过深度学习对微分方程解进行数学物理搜索

基本信息

  • 批准号:
    2602638
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Well posed mathematical problems are seldom solvable in an explicit, conventional sense. A notable example of this phenomenon is within the field of differential equations, where an exact solution often exists but is analytically impossible to find. The development of approximation methods to estimate such well-parametrized but not explicitly knowable solutions is an important endeavour within the field.This project presents a blueprint for building such approximations via deep learning. We build our methods on assumptions satisfied by a large class of differential equations, such as Frechet differentiability of the equation operators and compact domains of interest. We aim to demonstrate that neural network solution models are almost always capable of being found under such assumptions. We also hope to present explicit results on the errors expected from these models, alongside techniques for quantifying and minimising those errors. Finally, we aim to provide strict guarantees on the model sizes, architectures, optimization run-times, etc., needed to search for models that are accurate up to pre-specified tolerances.The project will hope to advance the field of neural network-based differential equation solving by adding two novel facets to it. First, by fusing ideas from numerical methods and error analysis into deep learning of parametrized objects, we hope to move the field away from its reliance on surrogate markers, like loss functions, as a means of error analysis. In turn, that will also lead us to methods of efficient error correction.Second, we aim to provide a rigorous set of a priori-decidable strategies for efficient model building by leveraging the emerging advances in computing infrastructure and the algorithms that can tap into them.Indeed, the project has already seen its first successes in the modelling of dynamical systems' differential equations (Physical Review E 105, 065305) and in sparsifying deep networks (Redman et al., ICML 2022). Given the generality of the results developed in the latter work (it concerns all deep networks, not just differential equation solution models), we believe the project will lead to significant results beyond its originally planned scope.Success in these objectives will require the creation of new techniques within the fields of random dynamical systems, stochastic computational methods, deep learning methods for equation solving, and optimization/complexity analysis, amongst others, each of which plays a central role in the CDT's research and training missions.
好的数学问题很少能用明确的、传统的意义来解决。这种现象的一个显著的例子是在微分方程领域中,在这个领域中,精确解经常存在,但却无法通过解析找到。发展近似方法来估计这类参数化良好但不显式可知的解是该领域的一项重要努力。这个项目展示了一个通过深度学习构建这种近似的蓝图。我们的方法建立在一大类微分方程所满足的假设上,例如方程算子的Frechet可微性和感兴趣的紧定义域。我们的目标是证明神经网络解模型几乎总是能够在这样的假设下被发现。我们还希望对这些模型的预期误差给出明确的结果,以及量化和最小化这些误差的技术。最后,我们的目标是在模型尺寸、架构、优化运行时间等方面提供严格的保证,以搜索精确到预先指定公差的模型。该项目希望通过增加两个新的方面来推进基于神经网络的微分方程求解领域。首先,通过将数值方法和误差分析的思想融合到参数化对象的深度学习中,我们希望将该领域从依赖替代标记(如损失函数)作为误差分析的手段中移开。反过来,这也将引导我们找到有效的纠错方法。其次,我们的目标是通过利用计算基础设施和可以利用它们的算法的新兴进展,为有效的模型构建提供一套严格的优先级可决定策略。事实上,该项目已经在动力系统微分方程建模(Physical Review E 105, 065305)和深度网络稀疏化(Redman et al., ICML 2022)方面取得了第一次成功。鉴于后一项工作中开发的结果的通用性(它涉及所有深度网络,而不仅仅是微分方程解模型),我们相信该项目将导致超出其最初计划范围的重要结果。这些目标的成功将需要在随机动力系统、随机计算方法、求解方程的深度学习方法和优化/复杂性分析等领域创造新技术,其中每一个都在CDT的研究和培训任务中发挥着核心作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
  • DOI:
    10.1002/cam4.5377
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
  • DOI:
    10.1186/s12889-023-15027-w
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
  • DOI:
    10.1007/s10067-023-06584-x
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
  • 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
  • DOI:
    10.1186/s12859-023-05245-9
  • 发表时间:
    2023-03-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
  • 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
  • DOI:
    10.1039/d2nh00424k
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Categorical Duality and Semantics Across Mathematics, Informatics and Physics and their Applications to Categorical Machine Learning and Quantum Computing
数学、信息学和物理领域的分类对偶性和语义及其在分类机器学习和量子计算中的应用
  • 批准号:
    23K13008
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The mathematics of Stackelberg games in machine learning: constructing categories towards powerful algorithms
机器学习中 Stackelberg 博弈的数学:构建强大算法的类别
  • 批准号:
    EP/X040909/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Conference: Mathematics and Machine Learning 2023
会议:数学与机器学习 2023
  • 批准号:
    2331298
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER: Orchestrating Productive Collaboration Among Students in Mathematics with Multimodal Machine Learning
EAGER:通过多模态机器学习协调数学学生之间的富有成效的协作
  • 批准号:
    2331379
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Data-driven modelling and computation-improving the efficiency of computations in applied mathematics through scientific machine learning
数据驱动建模与计算——通过科学机器学习提高应用数学计算效率
  • 批准号:
    2777754
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
Bayesian Neural Network methods for machine learning with applications in Financial Mathematics
用于机器学习的贝叶斯神经网络方法及其在金融数学中的应用
  • 批准号:
    2746033
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Studentship
A GPU Server for Integration of Machine Learning in Mathematics and Statistics Research and Training
用于将机器学习集成到数学和统计研究与培训中的 GPU 服务器
  • 批准号:
    RTI-2021-00675
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Tools and Instruments
Automated Theorem Proving with Machine Learning for Automating Mathematics
使用机器学习自动证明数学自动化
  • 批准号:
    19K22842
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Extension: MathSoMac: the social machine of mathematics
扩展:MathSoMac:数学社交机器
  • 批准号:
    EP/R03169X/1
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Example-driven machine-human collaboration in mathematics
数学中实例驱动的人机协作
  • 批准号:
    EP/P017320/1
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了