A GPU Server for Integration of Machine Learning in Mathematics and Statistics Research and Training

用于将机器学习集成到数学和统计研究与培训中的 GPU 服务器

基本信息

  • 批准号:
    RTI-2021-00675
  • 负责人:
  • 金额:
    $ 10.92万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Research Tools and Instruments
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

We are requesting funds for a GPU server to provide critical computing power to support current and future research and training in Data Science for the Department of Mathematics and Statistics at the University of Calgary. The breakthrough of Machine Learning (ML) into both academic research, and industrial applications, has fundamentally changed the state-of-the-art of academic research, as well as ordinary citizens' lives. The integration of ML has become a trend in many fields. Moreover, there is also a growing population of trainees (among academic undergraduate and graduate students and professional continuing learners) who are enthusiastic to comprehend ML techniques in our research laboratories. Significant leverages for researchers to meet this need include modern ML libraries such as TensorFlow and PyTorch, which allow for the simple and prompt utilization of established ML tools. To embrace this exciting and ongoing data-oriented paradigm shift, the Department of Mathematics and Statistics has formed a Data Science group for ML research and training. It focuses on ML development tailoring to existing strengths in Biostatistics, Mathematical finance, High-dimensional statistical modeling, Neural network characterization, and Earth science. The applicants, an NSERC-funded diverse team of eleven (11) researchers representing this Data Science group, are integrating ML into their established research programs, supporting trainees from various backgrounds to give them experience and a knowledgebase aligning with their career goals. A roadblock to enacting the impact of this Data Science initiative is the lack of appropriate computational infrastructure tailoring to modern ML techniques. As such, we are requesting the support to acquire a GPU server with current mainstream specifications, which will allow for prompt deployment and execution of ML models. This equipment will be open to all researchers and trainees in the Math/Stats Department, providing them hands-on experiences in building and implementing ML models. Additionally, for non-ML computational tasks, the GPU server will also provide massive parallel computing power via a user-friendly interface, relieving researchers from writing code to manually coordinate multi-threads tasks (e.g., using OpenMP or MPI). The proposal is fully supported by the University of Calgary IT team, who will provide long-term storage, networking, maintenance, and user training. In summary, by supporting ML-focused and non-ML parallel computations, this infrastructure will benefit the research and HQP training in the Department, providing broader and better job opportunities for trainees in our graduate and undergraduate programs. When utilizing the equipment, actionable and measurable procedures will be implemented to facilitate a high degree of EDI in the department.
我们正在请求为GPU服务器提供资金,以提供关键的计算能力,以支持当前和未来的数据科学研究和培训,为卡尔加里大学数学与统计学系。机器学习在学术研究和产业应用上的突破,从根本上改变了学术研究的现状,也改变了普通公民的生活。机器学习的集成已经成为许多领域的趋势。此外,还有越来越多的受训人员(包括学术本科生和研究生以及专业继续学习者)热衷于在我们的研究实验室中理解机器学习技术。对于研究人员来说,满足这一需求的重要杠杆包括现代机器学习库,如TensorFlow和PyTorch,它们允许简单而迅速地使用已建立的机器学习工具。为了迎接这种令人兴奋和正在进行的以数据为导向的范式转变,数学与统计学系成立了一个数据科学小组,用于机器学习的研究和培训。它专注于ML开发,以适应生物统计学,数学金融,高维统计建模,神经网络表征和地球科学的现有优势。申请人是nserc资助的一个由11名研究人员组成的多元化团队,代表了这个数据科学小组,他们正在将机器学习整合到他们已经建立的研究项目中,支持来自不同背景的学员,为他们提供经验和符合他们职业目标的知识库。实现这一数据科学倡议影响的一个障碍是缺乏适合现代ML技术的适当计算基础设施。因此,我们请求支持获得符合当前主流规范的GPU服务器,这将允许快速部署和执行ML模型。该设备将向数学/统计系的所有研究人员和学员开放,为他们提供构建和实施ML模型的实践经验。此外,对于非ml计算任务,GPU服务器还将通过用户友好的界面提供大量并行计算能力,使研究人员不必编写代码来手动协调多线程任务(例如,使用OpenMP或MPI)。该提案得到了卡尔加里大学IT团队的全力支持,他们将提供长期存储、网络、维护和用户培训。总之,通过支持以机器学习为中心和非机器学习并行计算,该基础设施将有利于部门的研究和HQP培训,为我们的研究生和本科生课程的学员提供更广泛和更好的工作机会。在使用这些设备时,我们会实施可操作和可衡量的程序,以促进部门内高度的电子数据交换。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhang, Qingrun其他文献

Stabilized COre gene and Pathway Election uncovers pan-cancer shared pathways and a cancer-specific driver.
  • DOI:
    10.1126/sciadv.abo2846
  • 发表时间:
    2022-12-21
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Kossinna, Pathum;Cai, Weijia;Lu, Xuewen;Shemanko, Carrie S.;Zhang, Qingrun
  • 通讯作者:
    Zhang, Qingrun
JAWAMix5: an out-of-core HDF5-based java implementation of whole-genome association studies using mixed models
  • DOI:
    10.1093/bioinformatics/btt122
  • 发表时间:
    2013-05-01
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Long, Quan;Zhang, Qingrun;Nordborg, Magnus
  • 通讯作者:
    Nordborg, Magnus
Universal primers for HBV genome DNA amplification across subtypes: a case study for designing more effective viral primers (Retracted article. See vol 4, pg Nil_1, 2007)
  • DOI:
    10.1186/1743-422x-4-92
  • 发表时间:
    2007-09-24
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Zhang, Qingrun;Wu, Guanghua;Zeng, Changqing
  • 通讯作者:
    Zeng, Changqing
Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden.
  • DOI:
    10.1038/ng.2678
  • 发表时间:
    2013-08
  • 期刊:
  • 影响因子:
    30.8
  • 作者:
    Long, Quan;Rabanal, Fernando A.;Meng, Dazhe;Huber, Christian D.;Farlow, Ashley;Platzer, Alexander;Zhang, Qingrun;Vilhjalmsson, Bjarni J.;Korte, Arthur;Nizhynska, Viktoria;Voronin, Viktor;Korte, Pamela;Sedman, Laura;Mandakova, Terezie;Lysak, Martin A.;Seren, Uemit;Hellmann, Ines;Nordborg, Magnus
  • 通讯作者:
    Nordborg, Magnus
A second generation human haplotype map of over 3.1 million SNPs.
  • DOI:
    10.1038/nature06258
  • 发表时间:
    2007-10-18
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Frazer, Kelly A.;Ballinger, Dennis G.;Cox, David R.;Hinds, David A.;Stuve, Laura L.;Gibbs, Richard A.;Belmont, John W.;Boudreau, Andrew;Hardenbol, Paul;Leal, Suzanne M.;Pasternak, Shiran;Wheeler, David A.;Willis, Thomas D.;Yu, Fuli;Yang, Huanming;Zeng, Changqing;Gao, Yang;Hu, Haoran;Hu, Weitao;Li, Chaohua;Lin, Wei;Liu, Siqi;Pan, Hao;Tang, Xiaoli;Wang, Jian;Wang, Wei;Yu, Jun;Zhang, Bo;Zhang, Qingrun;Zhao, Hongbin;Zhao, Hui;Zhou, Jun;Gabriel, Stacey B.;Barry, Rachel;Blumenstiel, Brendan;Camargo, Amy;Defelice, Matthew;Faggart, Maura;Goyette, Mary;Gupta, Supriya;Moore, Jamie;Nguyen, Huy;Onofrio, Robert C.;Parkin, Melissa;Roy, Jessica;Stahl, Erich;Winchester, Ellen;Ziaugra, Liuda;Altshuler, David;Shen, Yan;Yao, Zhijian;Huang, Wei;Chu, Xun;He, Yungang;Jin, Li;Liu, Yangfan;Shen, Yayun;Sun, Weiwei;Wang, Haifeng;Wang, Yi;Wang, Ying;Xiong, Xiaoyan;Xu, Liang;Waye, Mary M. Y.;Tsui, Stephen K. W.;Wong, J. Tze-Fei;Galver, Luana M.;Fan, Jian-Bing;Gunderson, Kevin;Murray, Sarah S.;Oliphant, Arnold R.;Chee, Mark S.;Montpetit, Alexandre;Chagnon, Fanny;Ferretti, Vincent;Leboeuf, Martin;Olivier, Jean-Franccois;Phillips, Michael S.;Roumy, Stephanie;Sallee, Clementine;Verner, Andrei;Hudson, Thomas J.;Kwok, Pui-Yan;Cai, Dongmei;Koboldt, Daniel C.;Miller, Raymond D.;Pawlikowska, Ludmila;Taillon-Miller, Patricia;Xiao, Ming;Tsui, Lap-Chee;Mak, William;Song, You Qiang;Tam, Paul K. H.;Nakamura, Yusuke;Kawaguchi, Takahisa;Kitamoto, Takuya;Morizono, Takashi;Nagashima, Atsushi;Ohnishi, Yozo;Sekine, Akihiro;Tanaka, Toshihiro;Tsunoda, Tatsuhiko;Deloukas, Panos;Bird, Christine P.;Delgado, Marcos;Dermitzakis, Emmanouil T.;Gwilliam, Rhian;Hunt, Sarah;Morrison, Jonathan;Powell, Don;Stranger, Barbara E.;Whittaker, Pamela;Bentley, David R.;Daly, Mark J.;de Bakker, Paul I. W.;Barrett, Jeff;Chretien, Yves R.;Maller, Julian;McCarroll, Steve;Patterson, Nick;Pe'er, Itsik;Price, Alkes;Purcell, Shaun;Richter, Daniel J.;Sabeti, Pardis;Saxena, Richa;Schaffner, Stephen F.;Sham, Pak C.;Varilly, Patrick;Altshuler, David;Stein, Lincoln D.;Krishnan, Lalitha;Smith, Albert Vernon;Tello-Ruiz, Marcela K.;Thorisson, Gudmundur A.;Chakravarti, Aravinda;Chen, Peter E.;Cutler, David J.;Kashuk, Carl S.;Lin, Shin;Abecasis, Goncalo R.;Guan, Weihua;Li, Yun;Munro, Heather M.;Qin, Zhaohui Steve;Thomas, Daryl J.;McVean, Gilean;Auton, Adam;Bottolo, Leonardo;Cardin, Niall;Eyheramendy, Susana;Freeman, Colin;Marchini, Jonathan;Myers, Simon;Spencer, Chris;Stephens, Matthew;Donnelly, Peter;Cardon, Lon R.;Clarke, Geraldine;Evans, David M.;Morris, Andrew P.;Weir, Bruce S.;Tsunoda, Tatsuhiko;Johnson, Todd A.;Mullikin, James C.;Sherry, Stephen T.;Feolo, Michael;Skol, Andrew
  • 通讯作者:
    Skol, Andrew

Zhang, Qingrun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhang, Qingrun', 18)}}的其他基金

Statistical models and computational tools for gene-gene interaction analyses by utilizing multi-scale omics
利用多尺度组学进行基因间相互作用分析的统计模型和计算工具
  • 批准号:
    RGPIN-2018-05147
  • 财政年份:
    2022
  • 资助金额:
    $ 10.92万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical models and computational tools for gene-gene interaction analyses by utilizing multi-scale omics
利用多尺度组学进行基因间相互作用分析的统计模型和计算工具
  • 批准号:
    RGPIN-2018-05147
  • 财政年份:
    2021
  • 资助金额:
    $ 10.92万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical models and computational tools for gene-gene interaction analyses by utilizing multi-scale omics
利用多尺度组学进行基因间相互作用分析的统计模型和计算工具
  • 批准号:
    RGPIN-2018-05147
  • 财政年份:
    2020
  • 资助金额:
    $ 10.92万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical models and computational tools for gene-gene interaction analyses by utilizing multi-scale omics
利用多尺度组学进行基因间相互作用分析的统计模型和计算工具
  • 批准号:
    RGPIN-2018-05147
  • 财政年份:
    2019
  • 资助金额:
    $ 10.92万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical models and computational tools for gene-gene interaction analyses by utilizing multi-scale omics
利用多尺度组学进行基因间相互作用分析的统计模型和计算工具
  • 批准号:
    RGPIN-2018-05147
  • 财政年份:
    2018
  • 资助金额:
    $ 10.92万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical models and computational tools for gene-gene interaction analyses by utilizing multi-scale omics
利用多尺度组学进行基因间相互作用分析的统计模型和计算工具
  • 批准号:
    DGECR-2018-00061
  • 财政年份:
    2018
  • 资助金额:
    $ 10.92万
  • 项目类别:
    Discovery Launch Supplement

相似海外基金

Server / HPC Cluster
服务器/HPC集群
  • 批准号:
    527049502
  • 财政年份:
    2024
  • 资助金额:
    $ 10.92万
  • 项目类别:
    Major Research Instrumentation
An all-in-one web server for RNA structure prediction using evolutionary information
一种使用进化信息预测 RNA 结构的一体化网络服务器
  • 批准号:
    10574944
  • 财政年份:
    2023
  • 资助金额:
    $ 10.92万
  • 项目类别:
Efficient Consolidation for DBMSes on a Server Machine with Persistent Memory
具有持久内存的服务器计算机上的 DBMS 的高效整合
  • 批准号:
    23H03367
  • 财政年份:
    2023
  • 资助金额:
    $ 10.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
GPU-Compute Server
GPU计算服务器
  • 批准号:
    530008379
  • 财政年份:
    2023
  • 资助金额:
    $ 10.92万
  • 项目类别:
    Major Research Instrumentation
Acquiring a GPU server to accelerate developing deep learning methods to reconstruct protein structures from cryo-EM data
购买 GPU 服务器以加速开发深度学习方法,以从冷冻电镜数据重建蛋白质结构
  • 批准号:
    10795465
  • 财政年份:
    2022
  • 资助金额:
    $ 10.92万
  • 项目类别:
IRIS hardware grant for FY2022, SKA high RAM server
2022 财年 IRIS 硬件拨款、SKA 高 RAM 服务器
  • 批准号:
    ST/X00564X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 10.92万
  • 项目类别:
    Research Grant
SHF: Small: Massively Parallel Server Processors
SHF:小型:大规模并行服务器处理器
  • 批准号:
    2153297
  • 财政年份:
    2022
  • 资助金额:
    $ 10.92万
  • 项目类别:
    Standard Grant
Towards Provable Security of Real-world Servers: Where Online Learning Meets Server Retrofitting
实现现实服务器的可证明安全性:在线学习与服务器改造的结合
  • 批准号:
    2140175
  • 财政年份:
    2022
  • 资助金额:
    $ 10.92万
  • 项目类别:
    Standard Grant
Utilizing Conducted Electromagnetic Interference (EMI) for Low-Cost Server-Level Power Monitoring in Data Centers
利用传导电磁干扰 (EMI) 进行数据中心的低成本服务器级电源监控
  • 批准号:
    2152357
  • 财政年份:
    2022
  • 资助金额:
    $ 10.92万
  • 项目类别:
    Standard Grant
Excellence in Research: PathoRadi ‒ an interactive web server for AI-assisted radiologic-pathologic image analysis, correlation and visualization
卓越研究:PathoRadi — 用于人工智能辅助放射病理图像分析、关联和可视化的交互式网络服务器
  • 批准号:
    2200585
  • 财政年份:
    2022
  • 资助金额:
    $ 10.92万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了