Representations of p-adic groups and dg-algebras

p-adic 群和 dg-代数的表示

基本信息

  • 批准号:
    2602995
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

The representation theory of p-adic groups has been a highly active area of research over the last 50 years, since the conjectures of Langlands proposed very deep connections to Number Theory. For example, there have been over 1500 publications which list the corresponding Mathematics Subject Classification (22E50) since 2000, and there are many more in neighbouring areas which overlap.Initially, only complex representations of p-adic groups were studied but more recently representations over other fields and rings have been considered. Of particular interest to number theorists is the case where the coefficient field in some way matches the p-adic field arising in the group - but this is also much more difficult: there are many techniques from the complex world which can no longer be used and, more significantly, many things are genuinely different. A particular example of this concerns the translation of questions about representation of p-adic groups into questions about modules over so-called Hecke algebras: for complex representations, these are somehow the "same thing" but for representations over other fields, they generally are not - somehow, the algebra only sees part of the picture. Fortunately, there is a way to extend this partial picture to reveal the missing parts, at least in principle - and the project is about putting this into practice. The Hecke algebras are the "symmetries" of certain objects, but these object can be enhanced into something called their "injective resolution" - looking at the symmetries of these injective resolutions (called a dg Hecke algebra) should then give a fuller picture of the representations. Ultimately, a complete understanding of all of these, together with the relationship between the dg Hecke algebras for the group and certain subgroups, should be a shell of an overarching picture tying them all together: a 2-category whose 2-endomorphisms are given by the above dg Hecke algebras.The project would begin by looking at complex representations of small groups (GL(1), GL(2), GL(3)) and try to compute these injective resolutions in the simplest case, and the corresponding dg Hecke algebras - even though the representation theory is already understood in these cases, these have not been computed - and look at the relationship between them (for example, for GL(1)GL(1) inside GL(2)). As well as producing new results, the main purpose of this is to be a testing ground to help inform the next stage: to repeat the same computations for p-modular representations. We have clear path to this and yet, even for GL(2), it would be a major achievement in terms of interest in the community. Thus, the major (technical) aims are:1) to compute the injective resolutions of the trivial complex representation of the Iwahori subgroup for GL(1), GL(2) and GL(3), and the corresponding dg Hecke algebra;2) to compute the dg bimodules giving parabolic induction and restriction for these dg Hecke algebras and understand their properties;3) to repeat these steps for the trivial p-modular representation of the pro-p-Iwahori subgroup for GL(1), GL(2) and GL(3);4) to interpret this in terms of the action of a 2-category.
在过去的50年里,p进群的表示理论一直是一个非常活跃的研究领域,因为朗兰兹的著作提出了与数论非常深刻的联系。例如,自2000年以来,已经有超过1500种出版物列出了相应的数学主题分类(22 E50),并且在相邻领域中有更多的重叠。最初,只研究了p进群的复表示,但最近考虑了其他域和环的表示。数论学家特别感兴趣的是系数场在某种程度上与群中产生的p进场相匹配的情况--但这也要困难得多:复杂世界中有许多技术不再能用了,更重要的是,许多东西真的不同了。这方面的一个特别的例子涉及到将关于p-adic群的表示的问题转化为关于所谓的Hecke代数上的模的问题:对于复表示,它们在某种程度上是“同一件事”,但对于其他域上的表示,它们通常不是--不知何故,代数只看到了画面的一部分。幸运的是,至少在原则上,有一种方法可以扩展这一部分,以揭示缺失的部分-该项目就是将其付诸实践。赫克代数是某些对象的“对称性”,但这些对象可以被增强为它们的“内射归结”--研究这些内射归结的对称性(称为dg赫克代数)应该会给出更全面的表示。最终,对所有这些的完整理解,以及群和某些子群的dg Hecke代数之间的关系,应该是将它们联系在一起的总体图景的外壳:一个2-范畴,它的2-自同态由上述dg Hecke代数给出。该项目将开始,首先研究小群的复表示(GL(1),GL(2),GL(3)),并尝试计算最简单情况下的这些内射分解,以及相应的dg Hecke代数-尽管在这些情况下表示论已经被理解,但这些还没有被计算-并查看它们之间的关系(例如,对于GL(1)GL(1)在GL(2)内)。除了产生新的结果外,这样做的主要目的是成为一个测试场,以帮助为下一阶段提供信息:对p-模表示重复相同的计算。我们有明确的道路,但即使是GL(2),这将是一个重大的成就,在社会的利益。因此,少校(技术)目的是:1)计算GL(1),GL(2)和GL(3)的Iwahori子群的平凡复表示的内射分解,以及相应的dg Hecke代数;2)计算这些dg Hecke代数的给出抛物归纳和限制的dg双模,并理解它们的性质;3)对GL(1),GL(2)和GL(3)的pro-p-Iwahori子群的平凡p-模表示重复这些步骤;(4)根据2-范畴的作用来解释这一点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

二维p-adic空间上谱集猜想的研究
  • 批准号:
    12361015
  • 批准年份:
    2023
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
p-adic域上简约群表示的Arthur-packets及其几何构造
  • 批准号:
    12371010
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
指数和与p-adic分析
  • 批准号:
    12171332
  • 批准年份:
    2021
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
组合同余式与p-adic同余式的研究
  • 批准号:
    12001288
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
关于 p-adic 对称空间 distinguished 表示和函子转换一些问题的研究
  • 批准号:
    12001191
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
几类伪随机序列的线性复杂度和2-adic复杂度及其稳定性分析
  • 批准号:
    61902429
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
模p Langlands 纲领和Shimura曲线的上同调
  • 批准号:
    11971028
  • 批准年份:
    2019
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目
信息安全中伪随机序列的生成和性质及应用研究
  • 批准号:
    61902304
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
带p-adic Gamma函数的组合同余式研究
  • 批准号:
    11801417
  • 批准年份:
    2018
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
p-adic域上的例外群G2上的傅里叶雅克比模型的唯一性
  • 批准号:
    11801577
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Parahoric Character Sheaves and Representations of p-Adic Groups
隐喻特征束和 p-Adic 群的表示
  • 批准号:
    2401114
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Bruhat-Tits theory in the representations of p-adic groups, and post-quantum cryptography
p-adic 群表示中的 Bruhat-Tits 理论和后量子密码学
  • 批准号:
    RGPIN-2020-05020
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Distinguished representations of reductive p-adic groups
还原p进群的杰出表示
  • 批准号:
    RGPIN-2017-06066
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Representations of p-adic groups and different incarnations of the Langlands Program
职业:p-adic 群体的代表和朗兰兹纲领的不同体现
  • 批准号:
    2044643
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Representations of p-adic Covering Groups and Integrable Systems
p-adic 覆盖群和可积系统的表示
  • 批准号:
    2101392
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Bruhat-Tits theory in the representations of p-adic groups, and post-quantum cryptography
p-adic 群表示中的 Bruhat-Tits 理论和后量子密码学
  • 批准号:
    RGPIN-2020-05020
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Unitary representations of reductive p-adic groups: an algorithm
还原 p 进群的酉表示:一种算法
  • 批准号:
    EP/V046713/1
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Bruhat-Tits theory in the representations of p-adic groups, and post-quantum cryptography
p-adic 群表示中的 Bruhat-Tits 理论和后量子密码学
  • 批准号:
    RGPIN-2020-05020
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Distinguished representations of reductive p-adic groups
还原p进群的杰出表示
  • 批准号:
    RGPIN-2017-06066
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Representations of p-adic Groups and the Local Langlands Correspondence
p-adic 群的表示和当地朗兰通讯
  • 批准号:
    2055230
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了