Optimisation of 3D Printed Hydrogel Scaffolds for Use in Tissue Engineering
用于组织工程的 3D 打印水凝胶支架的优化
基本信息
- 批准号:2603664
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Tissues or organs that have been severely damaged may need organ or tissue transplantation to replace or reconstruct the devastated tissues or organs. Problems in current organ transplantation include shortage of donated organs and immune rejection(1). This area of research is extremely important as tissue engineering could possibly replace the need for organ and tissue transplants and may also overcome the drawbacks involved in organ transplantation. There is a shortage of organ donors moreover in 2010, a study was conducted that concluded that only 10% of the worldwide organ transplant needs weremet, which highlights the need for the advancement of tissue engineering(2).HydrogelsHydrogels are a network of hydrophilic polymers where the degree of flexibility can change due to water content. Hydrogels can absorb water in the amount from 10% up to thousands of times their dry weight(3). They can retain a large amount of water or biological fluids and are characterized by a soft consistency like living tissues and this quality make them an ideal substance for a variety of applications within the body(4). The absorption of water is made possible by hydrophilic groups within the polymer matrix. Hydrogels are relevant to tissue engineering due to their biocompatibility and control of water content. This can determine its consistency to meet both material and biological requirements to treat or replace tissues and possibly in the future, more complex structures such as organs(4)(5).Tissue ScaffoldsCertain diseases can lead to significant functional defects. Supportive materials are needed to restore healthy interactions between diseased organs and surrounding tissues(6). Supportive scaffolds are used for guided tissue growth to aid regenerative processes(3). Scaffolds provide structural support and shape to construct, a place for cell attachment and growth and are usually biodegradable and biocompatible(7).The implanted scaffold used in the body should aim to match the mechanical stiffness of the surrounding extracellular matrix that it is supporting. A challenge faced by tissue engineers is the application of a fully biodegradable biomaterial. This is because biodegradable materials that have the perfect balance of mechanical strength, desired duration of biodegradability, with manageable costs is still limited(8).PVAPVA has received great popularity with many articles involving its use due to its biocompatibility, biodegradability, non-toxicity, solubility in water, chemical resistance and relatively inexpensive price(9)(10). However, PVA has still not been used as a scaffold within the body. The risks associated with it have not been fully documented despite it being nontoxic, the break down products after degradation may be toxic and thus not entirely safe(11). There are limitations with the use of pure PVA such as stiffness, however these may be overcome by forming a composite. Many studies have used PVA composites for many different purposes.Research and Objective PlanThere are two main objectives for this project which are to:1) assess the impact of design (formulation) on the processing of PVA and PVAcomposites hydrogel scaffolds to provide adequate mechanical support and supportcell growth.2) evaluate the effect of manufacturing (conventional versus 3D printing) on transportsproperties and thus the ability this must mimic the ECM and support cell growth.References1. https://doi.org/10.1098/rsif.2006.01242. https://doi.org/10.1016/j.msec.2021.1119273. https://doi.org/10.1016/S0168-583X(99)00118-44. https://doi.org/10.1016/j.msec.2015.07.0535. https://doi.org/10.1007/s10965-013-0273-76. https://doi.org/10.1016/j.jconrel.2020.11.0447. https://doi.org/10.1007/978-1-349-09574-2_248. https://doi.org/10.3389/fbioe.2019.001279. https://doi.org/10.1179/1753555713Y.000000011510. https://doi.org/10.1021/bm200083n11. https://doi.org/10.1016/j.ijbiomac.2018.07.159
严重受损的组织或器官可能需要器官或组织移植来取代或重建受损的组织或器官。目前器官移植中存在的问题包括供体器官短缺和免疫排斥。这一研究领域极其重要,因为组织工程可能取代器官和组织移植的需要,也可能克服器官移植所涉及的缺点。此外,2010年进行的一项研究得出的结论是,全球器官移植需求的10%得到了满足,这突显了推进组织工程的必要性(2)。水凝胶是一种亲水性聚合物网络,其柔韧性可以随着水分的变化而改变。水凝胶可以吸收10%至几千倍于其干重的水。它们可以保留大量的水或生物液体,其特点是像活组织一样柔软稠密,这一特性使其成为人体内各种应用的理想物质(4)。聚合物基质中的亲水基团使水的吸收成为可能。水凝胶因其生物相容性和水含量的可控性而与组织工程相关。这可以确定其一致性,以满足治疗或替换组织的材料和生物要求,并可能在未来满足更复杂的结构,如器官(4)(5)。问题支架某些疾病可导致严重的功能缺陷。需要支持性材料来恢复疾病器官和周围组织之间的健康互动(6)。支撑性支架用于引导组织生长,以帮助再生过程(3)。支架为构建细胞附着和生长提供了结构支撑和形状,通常是可生物降解和生物兼容的(7)。体内使用的植入支架的目标应该是匹配它所支撑的周围细胞外基质的机械硬度。组织工程师面临的一个挑战是应用一种完全可生物降解的生物材料。这是因为具有机械强度、期望的生物降解性持续时间和可管理成本的可生物降解材料仍然有限(8)。PVAPVA因其生物兼容性、生物降解性、无毒、在水中的溶解性、耐化学性和相对便宜的价格而受到许多涉及其使用的文章的欢迎(9)(10)。然而,PVA仍然没有被用作体内的支架。尽管它是无毒的,但与之相关的风险尚未得到充分的记录,降解后的产品可能是有毒的,因此并不完全安全(11)。使用纯PVA有一定的局限性,例如刚性,但是可以通过形成复合材料来克服这些限制。研究和目的本项目的两个主要目标是:1)评估设计(配方)对PVA和PVA复合材料水凝胶支架加工的影响,以提供足够的机械支持和支持细胞生长;2)评估制造(传统打印与3D打印)对运输性能的影响,从而评估其必须模仿细胞外基质和支持细胞生长的能力。Https://doi.org/10.1098/rsif.2006.01242.Https://doi.org/10.1016/j.msec.2021.1119273.Https://doi.org/10.1016/S0168-583X(99)00118-44.Https://doi.org/10.1016/j.msec.2015.07.0535.Https://doi.org/10.1007/s10965-013-0273-76.Https://doi.org/10.1016/j.jconrel.2020.11.0447.Https://doi.org/10.1007/978-1-349-09574-2_248.Https://doi.org/10.3389/fbioe.2019.001279.Https://doi.org/10.1179/1753555713Y.000000011510.Https://doi.org/10.1021/bm200083n11.Https://doi.org/10.1016/j.ijbiomac.2018.07.159
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
3D打印楔形梯度多孔支架的优化构建及促进HTO术后骨再生修复的实验研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于3D Slicer的颅内动脉瘤破裂风险评估机器学习模型开发及临床推广应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
智能3D超微血管成像联合实时剪切波弹性评估胎盘功能对高血压孕妇子痫前期的预测效能分析
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
锰酸锂基复合气凝胶的3D打印构筑及其提锂机制研究
- 批准号:JCZRLH202500778
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
3D细胞球来源的凋亡小体修饰间充质干细胞的制备及“内外兼修”策略的构建用于脊髓损伤修复的作用机制研究
- 批准号:QN25H060008
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
3D打印PH-GBS@CCP复合支架诱导骨肉瘤铜死亡及增效抗PD-1治疗的作用机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
双重固化3D打印连续纤维C/C复合材料成型与渗碳致密化机理研究
- 批准号:2025JJ60269
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于微流控技术的3D细胞培养体系构建及在乳腺癌耐药机制中应用研究
- 批准号:2025JJ70487
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
载椎体骨髓干细胞外泌体3D打印n-HA/PA66生物支架的研制及促脊柱融合机制研究
- 批准号:2025JJ80409
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于磁流变响应的3D打印混凝土性能提
升及调控机理研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
STTR Phase II: Fabrication and Structural Testing of a 3D Concrete Printed Anchor for Floating Offshore Wind
STTR 第二阶段:用于浮动海上风电的 3D 混凝土打印锚的制造和结构测试
- 批准号:
2333306 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Cooperative Agreement
Cutting-edge bio-material for 3D printed bone fixation plates
用于 3D 打印骨固定板的尖端生物材料
- 批准号:
24K20065 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Empowering Wearable Smart Devices with 3D Printed Energy Storage
通过 3D 打印能量存储为可穿戴智能设备提供支持
- 批准号:
DP240100892 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Manufacturing Nanostructured Metallic Materials via 3D Printed Polymers
通过 3D 打印聚合物制造纳米结构金属材料
- 批准号:
DE240100917 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
RII Track-4:NSF:Planetary Robotic Construction on the Moon and Mars Using 3D Printed Waterless Concrete
RII Track-4:NSF:使用 3D 打印无水混凝土在月球和火星上进行行星机器人施工
- 批准号:
2327469 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
SBIR Phase I: CAS: Biomimetic 3D Printed Metal Mold to Mass Produce Dry-Pressed, Modular, Biophilic Concrete Reef Substrate
SBIR 第一阶段:CAS:仿生 3D 打印金属模具,用于批量生产干压、模块化、亲生物混凝土珊瑚礁基底
- 批准号:
2334667 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Developing Ultrasound-Programmable 3D-Printed Biomaterials for Spatiotemporal Control of Gene Delivery
职业:开发用于基因传递时空控制的超声波可编程 3D 打印生物材料
- 批准号:
2339254 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
NSF Convergence Accelerator Track M: Biofilm-based Corrosion Control using 3D Printed Biotechnology
NSF 融合加速器轨道 M:使用 3D 打印生物技术进行基于生物膜的腐蚀控制
- 批准号:
2344389 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Development of a 3D-printed anisotropic heart-on-a-chip for drug screening applications
开发用于药物筛选应用的 3D 打印各向异性芯片心脏
- 批准号:
EP/X02721X/2 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship














{{item.name}}会员




