Identification of subtypes of depression using remote measurement technologies

使用远程测量技术识别抑郁症亚型

基本信息

  • 批准号:
    2604562
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Despite its heterogenous nature, it has proved difficult to identify sub-types of major depressive disorder (MDD). This has limited the development of novel therapeutics, that require more precise matching of treatments to specific patient presentations, while also hindering the identification of potential biomarkers (Baumeister & Parker, 2012). Distinguishing between atypical and typical depression is frequent in the literature to stratify patient profiles, however, research exploring disease trajectories across the two groups have found contradicting evidence (Lamers et al., 2016). Researchers have suggested that data mining methods on large scale prospective studies could be useful to better understand these subtypes (Chekroud et al. 2016 and van Loo et al. 2014). Yet, this requires long-term symptom tracking methodologies with high temporal resolution, to get a more defined picture of depression phenotypes across a wide variety of variables. Remote measurement technologies (RMT) harvest data from smartphones and wearable devices and can provide a 360-degree picture of an individual's day-to-day life, including sleep, activity, heart rate, location, cognition, speech and mood/stressors. The Remote Assessment of Disease and Relapse- Major Depressive Disorder (RADAR-MDD) study collected such data on 623 patients across three clinical sites (UK, Spain, Netherlands). The study utilized smartphone applications and wearable fitness devices to track MDD symptoms longitudinally over 2 years (for more detail see Matcham et al., 2019), providing fertile ground for further investigation into phenotypic clustering of depression outcomes and their trajectories. The proposed PhD project aims to fill this gap in the literature and design a unique study by utilizing the data collected throughout the RADAR-MDD study, to understand symptom clustering. The supervisors for this project provide a partnership of clinical and epidemiological expertise (Hotopf) and AI/computer science (Cummins). Hotopf is the PI for the RADAR-MDD project, and therefore has a comprehensive understanding of data quality and can ensure data access. The primary research question is to identify behavioural/physiological subtypes which are associated with different trajectories of depression. The research will combine a "top-down" data driven approach, utilizing machine learning tools to cluster symptom profiles, as well as hypothesis driven approaches to identify differences in phenotype across predetermined groups: Identify whether depressive episodes within the same participants are phenotypically similar. Determine whether pre-defined groups (mild, moderate and severe episodes; typical versus atypical patterns) can be distinguished using the RMT data.
尽管其异质性,它已被证明很难确定亚型重度抑郁症(MDD)。这限制了新疗法的发展,这需要更精确地匹配特定患者的治疗表现,同时也阻碍了潜在生物标志物的识别(Baumeister & Parker, 2012)。区分非典型和典型抑郁症在文献中经常用于对患者概况进行分层,然而,探索两组疾病轨迹的研究发现了相互矛盾的证据(Lamers等人,2016)。研究人员建议,大规模前瞻性研究的数据挖掘方法可能有助于更好地理解这些亚型(Chekroud et al. 2016和van Loo et al. 2014)。然而,这需要具有高时间分辨率的长期症状跟踪方法,以便在各种变量中获得更明确的抑郁症表型图像。远程测量技术(RMT)从智能手机和可穿戴设备获取数据,可以提供个人日常生活的360度全景图,包括睡眠、活动、心率、位置、认知、语言和情绪/压力源。疾病和复发的远程评估-重度抑郁症(雷达- mdd)研究收集了来自三个临床站点(英国、西班牙、荷兰)的623名患者的数据。该研究利用智能手机应用程序和可穿戴健身设备对重度抑郁症症状进行了长达2年的纵向追踪(详见Matcham et al., 2019),为进一步研究抑郁症结果的表型聚类及其轨迹提供了肥沃的土壤。本博士项目旨在填补这一文献空白,并利用整个RADAR-MDD研究收集的数据设计一个独特的研究,以了解症状聚类。该项目的主管提供临床和流行病学专业知识(Hotopf)和人工智能/计算机科学(康明斯)的合作伙伴关系。Hotopf是RADAR-MDD项目的PI,对数据质量有全面的了解,可以保证数据的访问。主要的研究问题是确定与不同抑郁轨迹相关的行为/生理亚型。该研究将结合“自上而下”的数据驱动方法,利用机器学习工具对症状概况进行聚类,以及假设驱动的方法来识别预定组之间的表型差异:确定同一参与者的抑郁发作是否在表型上相似。确定是否可以使用RMT数据区分预定义组(轻度、中度和重度发作;典型与非典型模式)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
  • DOI:
    10.1002/cam4.5377
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
  • DOI:
    10.1186/s12889-023-15027-w
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
  • DOI:
    10.1007/s10067-023-06584-x
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
  • 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
  • DOI:
    10.1186/s12859-023-05245-9
  • 发表时间:
    2023-03-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
  • 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
  • DOI:
    10.1039/d2nh00424k
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Assess Neural Circuits and Subtypes Underlying Dimensions of Neuropsychiatric Symptoms in Alzheimer's Disease
评估阿尔茨海默病神经精神症状的神经回路和亚型
  • 批准号:
    10741906
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Identifying Electrically Coupled Networks in vitro
体外识别电耦合网络
  • 批准号:
    10673919
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Consumer-based meditation app, Calm, for treatment of sleep disturbance in hematological cancer patients
基于消费者的冥想应用程序 Calm,用于治疗血液癌症患者的睡眠障碍
  • 批准号:
    10570259
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Exploring the relationship of COVID-19-related stressors and depression subtypes among Canadian aging populations: A longitudinal followed a national cohort
探索加拿大老年人群中与 COVID-19 相关的压力源和抑郁亚型的关系:纵向跟踪全国队列
  • 批准号:
    481311
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Functional subtypes of retinal ganglion cell photoreceptors
视网膜神经节细胞感光器的功能亚型
  • 批准号:
    10594572
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Identifying Electrically Coupled Networks in vitro
体外识别电耦合网络
  • 批准号:
    10504163
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Axonal myelination of interneurons in cortex: functional significance and plasticity
皮质中间神经元的轴突髓鞘形成:功能意义和可塑性
  • 批准号:
    10626677
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Flexible NLP toolkit for automatic curation of outcomes for breast cancer patients
灵活的 NLP 工具包,用于自动治疗乳腺癌患者的结果
  • 批准号:
    10420233
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Consumer-based meditation app, Calm, for treatment of sleep disturbance in hematological cancer patients
基于消费者的冥想应用程序 Calm,用于治疗血液癌症患者的睡眠障碍
  • 批准号:
    10444598
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Consumer-based meditation app, Calm, for treatment of sleep disturbance in hematological cancer patients
基于消费者的冥想应用程序 Calm,用于治疗血液癌症患者的睡眠障碍
  • 批准号:
    10684545
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了