Concurrent multi-task learning-based deep convolutional neural networks for high resolution assessment of in-vivo cardiac microstructure

基于并行多任务学习的深度卷积神经网络,用于体内心脏微观结构的高分辨率评估

基本信息

  • 批准号:
    2605686
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Aim of the PhD Project:Develop a concurrent multi-task learning-based deep convolutional neural network (CNN) for data acquisition and image reconstruction of highly-undersampled spiral MRI data with minimal artefact.Deploy these methods for efficient, high-resolution in-vivo diffusion tensor cardiovascular magnetic resonance of cardiac microstructure.Validate these methods in controls and patients with myocardial infarction (MI).Project Description:The complex arrangement and dynamics of heart muscle cells (cardiomyocytes) and groups of cardiomyocytes known as sheetlets is vital to normal cardiac function. Diffusion tensor cardiovascular magnetic resonance (DT-CMR) is a unique MRI method providing information on microscopic tissue structures, based on measuring the self-diffusion of water. DT-CMR can infer the orientation of cardiomyocytes and sheetlets, which reorientate during contraction and provide measures sensitive to changes in extracellular space, membrane integrity and coherence of cardiomyocyte orientation. This novel method is increasingly used to investigate the microscopic changes underlying disease.As part of our ongoing investigations into cardiac microstructure at the Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital, we have shown that acquisition of DT-CMR at multiple timepoints in the cardiac cycle is possible using the STEAM technique, which is a low signal to noise ratio (SNR) technique and therefore requires many signal averages at low resolution. As a result, pathologies affecting the right ventricle and atria, the thinned myocardium of chronically infarcted tissue and small focal changes cannot be adequately investigated.We recently developed a technique which samples data along two interleaved spiral paths to split the acquisition of higher resolution DT-CMR data across two heartbeats. However, interleaved DT-CMR techniques are sensitive to artefacts caused by localised changes in the magnetic field and motion between the two spirals. Despite these artefacts, we were able to increase the in-plane resolution of in-vivo DT-CMR acquisitions from 2.8x2.8mm2 to 1.8x1.8mm2[5].Unfortunately, acquiring two interleaves requires doubling the already long scan times, with typically twenty 18s breath holds required per slice and cardiac phase. In contrast, reconstructing data from a single interleave saves time, improves patient comfort and avoids some of the associated artefacts. Parallel imaging is frequently used to reduce the data required in MRI, but the associated loss of SNR, long computation times and the small field of view used in spiral STEAM DT-CMR are incompatible.In recent work we have established the effectiveness of deep convolutional neural networks (CNNs) in MRI reconstruction[6] and denoising DT-CMR datasets[7]. In simulations of spiral DT-CMR[8], we retrospectively undersampled DT-CMR images along spiral trajectories and trained a CNN using the fully sampled data as the ground truth. We demonstrated effective removal of aliasing artefacts with undersampling factors of up to 4 in this promising, but early stage pilot data. Here, we aim to build on these initial computational simulations and develop a clinically applicable in-vivo tool for CNN enabled efficient and robust high-resolution spiral DT-CMR in challenging patient cohorts. The student will develop a novel concurrent multi-task learning-based deep CNN for optimising data acquisition (i.e. seeking optimal spiral trajectories) and achieving high-fidelity image reconstruction (i.e. removal of undersampling and other artefacts) simultaneously. These methods will be tested in simulations and in-vivo using our state-of-the-art 3T Siemens Vida scanner at The Royal Brompton Hospital.
Aim of the PhD Project:Develop a concurrent multi-task learning-based deep convolutional neural network (CNN) for data acquisition and image reconstruction of highly-undersampled spiral MRI data with minimal artefact.Deploy these methods for efficient, high-resolution in-vivo diffusion tensor cardiovascular magnetic resonance of cardiac microstructure.Validate these methods in controls and patients with心肌梗死(MI)。项目描述:心肌细胞的复杂排列和动力学(心肌细胞)和被称为骨膜的心肌细胞组对正常的心脏功能至关重要。扩散张量心血管磁共振(DT-CMR)是一种独特的MRI方法,可根据测量水的自扩散提供有关微观组织结构的信息。 DT-CMR可以推断出心肌细胞和毛坯的方向,在收缩过程中重新定位,并为细胞外空间的变化,膜完整性和心肌细胞方向的相干性提供敏感的措施。这种新颖的方法越来越多地用于调查疾病的微观变化。作为我们正在进行的对心血管磁共振单元(Royal Brompton医院)对心脏微观结构的调查的一部分,我们已经表明,使用蒸汽技术的噪声率很低的信号和SNR,我们表明,DT-CMR在多个信号技术中可能需要在多个心脏周期中进行多个时间点(因此)。结果,影响右心室和心房的病理,慢性梗塞组织的稀薄心肌和小焦点变化无法得到充分研究。我们最近开发了一项技术,该技术沿着两种交织的螺旋路径采样数据,以分散两种心跳加热的高分辨率DT-CMR数据的采集。然而,交织的DT-CMR技术对磁场的局部变化和两个螺旋之间的运动引起的伪影敏感。尽管有这些人工制品,但我们能够将Vivo In-Vivo DT-CMR采集的平面分辨率从2.8x2.8mm2增加到1.8x1.8mm2 [5]。相比之下,从单个交流中重建数据可节省时间,改善患者的舒适度并避免一些相关的人工制品。并行成像经常用于减少MRI所需的数据,但是SNR的相关损失,较长的计算时间和螺旋蒸汽DT-CMR中使用的小视野是不相容的。在最近的工作中,我们确定了深卷卷神经网络(CNN)在MRI重建中的有效性[6] [6]] [6]和demisising DT-CMR DataSets [7]。在螺旋DT-CMR [8]的模拟中,我们沿着螺旋轨迹回顾性地采样了DT-CMR图像,并使用完全采样的数据作为地面真理训练了CNN。我们证明了在这个有前途但早期的试点数据中,有效地删除了具有多达4的底采样因子的混叠伪像。在这里,我们旨在基于这些初始计算模拟,并开发一种适用于CNN的临床上的体内工具,以实现有挑战性的患者队列中有效且可靠的高分辨率螺旋DT-CMR。该学生将开发一种新型的基于多任务的基于多任务的深层CNN,以优化数据获取(即寻求最佳的螺旋轨迹)并同时实现高保真图像重建(即去除底漆和其他人工伪像)。这些方法将在模拟和体内进行测试,并使用我们的最先进的3T西门子VIDA扫描仪在皇家Brompton医院进行测试。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Metal nanoparticles entrapped in metal matrices.
  • DOI:
    10.1039/d1na00315a
  • 发表时间:
    2021-07-27
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
  • 通讯作者:
Ged?chtnis und Wissenserwerb [Memory and knowledge acquisition]
  • DOI:
    10.1007/978-3-662-55754-9_2
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A Holistic Evaluation of CO2 Equivalent Greenhouse Gas Emissions from Compost Reactors with Aeration and Calcium Superphosphate Addition
曝气和添加过磷酸钙的堆肥反应器二氧化碳当量温室气体排放的整体评估
  • DOI:
    10.3969/j.issn.1674-764x.2010.02.010
  • 发表时间:
    2010-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

复合场景下基于多模态融合的轻量化任务处理与模型泛化研究
  • 批准号:
    62372111
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于扩散模型和多任务多模态表征学习的微表情识别研究
  • 批准号:
    62362037
  • 批准年份:
    2023
  • 资助金额:
    31.00 万元
  • 项目类别:
    地区科学基金项目
基于多任务注意力协同的高光谱和多光谱遥感图像融合
  • 批准号:
    42301375
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度强化学习的多星自主任务规划研究
  • 批准号:
    72301273
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
复杂时序约束下多水面船多AUV协同多点访问任务分配方法研究
  • 批准号:
    62373255
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Structure-Focused Multi-task Learning Approach for structural pattern recognition and analysis
用于结构模式识别和分析的以结构为中心的多任务学习方法
  • 批准号:
    24K20789
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343599
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Integrating Large Language Models for Long Horizon Task Planning in Multi-robot Scenarios
集成大型语言模型以实现多机器人场景中的长期任务规划
  • 批准号:
    24K07399
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Human Factors and Task Scheduling for Multi-Human Multi-Robot Collaborative Manufacturing in Industry 5.0 Contexts
职业:工业 5.0 背景下多人多机器人协同制造的人为因素和任务调度
  • 批准号:
    2338767
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了