Concurrent multi-task learning-based deep convolutional neural networks for high resolution assessment of in-vivo cardiac microstructure
基于并行多任务学习的深度卷积神经网络,用于体内心脏微观结构的高分辨率评估
基本信息
- 批准号:2605686
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Aim of the PhD Project:Develop a concurrent multi-task learning-based deep convolutional neural network (CNN) for data acquisition and image reconstruction of highly-undersampled spiral MRI data with minimal artefact.Deploy these methods for efficient, high-resolution in-vivo diffusion tensor cardiovascular magnetic resonance of cardiac microstructure.Validate these methods in controls and patients with myocardial infarction (MI).Project Description:The complex arrangement and dynamics of heart muscle cells (cardiomyocytes) and groups of cardiomyocytes known as sheetlets is vital to normal cardiac function. Diffusion tensor cardiovascular magnetic resonance (DT-CMR) is a unique MRI method providing information on microscopic tissue structures, based on measuring the self-diffusion of water. DT-CMR can infer the orientation of cardiomyocytes and sheetlets, which reorientate during contraction and provide measures sensitive to changes in extracellular space, membrane integrity and coherence of cardiomyocyte orientation. This novel method is increasingly used to investigate the microscopic changes underlying disease.As part of our ongoing investigations into cardiac microstructure at the Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital, we have shown that acquisition of DT-CMR at multiple timepoints in the cardiac cycle is possible using the STEAM technique, which is a low signal to noise ratio (SNR) technique and therefore requires many signal averages at low resolution. As a result, pathologies affecting the right ventricle and atria, the thinned myocardium of chronically infarcted tissue and small focal changes cannot be adequately investigated.We recently developed a technique which samples data along two interleaved spiral paths to split the acquisition of higher resolution DT-CMR data across two heartbeats. However, interleaved DT-CMR techniques are sensitive to artefacts caused by localised changes in the magnetic field and motion between the two spirals. Despite these artefacts, we were able to increase the in-plane resolution of in-vivo DT-CMR acquisitions from 2.8x2.8mm2 to 1.8x1.8mm2[5].Unfortunately, acquiring two interleaves requires doubling the already long scan times, with typically twenty 18s breath holds required per slice and cardiac phase. In contrast, reconstructing data from a single interleave saves time, improves patient comfort and avoids some of the associated artefacts. Parallel imaging is frequently used to reduce the data required in MRI, but the associated loss of SNR, long computation times and the small field of view used in spiral STEAM DT-CMR are incompatible.In recent work we have established the effectiveness of deep convolutional neural networks (CNNs) in MRI reconstruction[6] and denoising DT-CMR datasets[7]. In simulations of spiral DT-CMR[8], we retrospectively undersampled DT-CMR images along spiral trajectories and trained a CNN using the fully sampled data as the ground truth. We demonstrated effective removal of aliasing artefacts with undersampling factors of up to 4 in this promising, but early stage pilot data. Here, we aim to build on these initial computational simulations and develop a clinically applicable in-vivo tool for CNN enabled efficient and robust high-resolution spiral DT-CMR in challenging patient cohorts. The student will develop a novel concurrent multi-task learning-based deep CNN for optimising data acquisition (i.e. seeking optimal spiral trajectories) and achieving high-fidelity image reconstruction (i.e. removal of undersampling and other artefacts) simultaneously. These methods will be tested in simulations and in-vivo using our state-of-the-art 3T Siemens Vida scanner at The Royal Brompton Hospital.
PHD项目的目标:开发一种基于并行多任务学习的深卷积神经网络(CNN),用于以最少的伪影获取高度欠采样的螺旋MRI数据和图像重建。将这些方法应用于心脏微结构的高效、高分辨率体内扩散张量或心血管磁共振。在对照组和心肌梗死(MI)患者中验证这些方法。项目描述:心肌细胞(心肌细胞)和心肌细胞组的复杂排列和动力学对于正常的心功能至关重要。扩散张量心血管磁共振(DT-CMR)是一种独特的MRI方法,它基于测量水的自扩散来提供关于微观组织结构的信息。DT-CMR可以推测心肌细胞和心肌小片在收缩过程中重新定位的方向,并提供对细胞外空间、膜完整性和心肌细胞取向一致性变化敏感的指标。这种新的方法越来越多地被用于研究疾病背后的微观变化。作为我们在皇家布朗普顿医院心血管磁共振单位正在进行的心脏微结构研究的一部分,我们已经证明,使用STEAM技术可以在心脏周期的多个时间点获取DT-CMR,这是一种低信噪比(SNR)技术,因此需要在低分辨率下进行许多信号平均。因此,影响右室和心房、慢性心肌梗死组织变薄的心肌和微小的局灶性改变的病理机制无法得到充分的研究。我们最近开发了一种技术,沿着两个交错的螺旋路径采样数据,将高分辨率DT-CMR数据的采集分成两个心跳。然而,交错DT-CMR技术对两个螺旋之间的磁场和运动的局部变化引起的伪影很敏感。尽管有这些假象,我们还是能够将体内DT-CMR采集的平面内分辨率从2.8x2.8mm2提高到1.8x1.8mm2[5]。不幸的是,获得两个交错需要已经很长的扫描时间的两倍,通常每个切片和心脏时相需要20个18s的屏气。相比之下,从单个交错重建数据节省了时间,改善了患者的舒适度,并避免了一些相关的伪影。并行成像经常被用来减少MRI所需的数据量,但螺旋STEAM DT-CMR所使用的信噪比损失、计算时间长和视场小是不相容的。在最近的工作中,我们建立了深卷积神经网络(CNN)在MRI重建[6]和去噪DT-CMR数据集[7]中的有效性。在螺旋DT-CMR[8]的模拟中,我们沿着螺旋轨迹回溯性地欠采样DT-CMR图像,并使用完全采样的数据作为基本事实来训练CNN。在这个前景看好但处于早期阶段的试验数据中,我们展示了有效地去除混叠伪影,欠采样系数高达4。在这里,我们的目标是建立在这些初步的计算模拟的基础上,并开发一种临床适用的体内工具,用于CNN支持的高效和强大的高分辨率螺旋DT-CMR,以挑战患者队列。学生将开发一种基于并行多任务学习的深度CNN,用于优化数据采集(即寻找最佳螺旋轨迹)和同时实现高保真图像重建(即去除欠采样和其他伪影)。这些方法将在模拟和活体中使用我们在皇家布朗普顿医院最先进的3T西门子VIDA扫描仪进行测试。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
- DOI:
10.1002/cam4.5377 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
- DOI:
10.1186/s12889-023-15027-w - 发表时间:
2023-03-23 - 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
- DOI:
10.1007/s10067-023-06584-x - 发表时间:
2023-07 - 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
- DOI:
10.1186/s12859-023-05245-9 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
- DOI:
10.1039/d2nh00424k - 发表时间:
2023-03-27 - 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
基于Multi-Pass Cell的高功率皮秒激光脉冲非线性压缩关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Multi-decadeurbansubsidencemonitoringwithmulti-temporaryPStechnique
- 批准号:
- 批准年份:2022
- 资助金额:80 万元
- 项目类别:
High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
- 批准号:52111530069
- 批准年份:2021
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
基于8色荧光标记的Multi-InDel复合检测体系在降解混合检材鉴定的应用研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大地电磁强噪音压制的Multi-RRMC技术及其在青藏高原东南缘-印支块体地壳流追踪中的应用
- 批准号:
- 批准年份:2021
- 资助金额:15 万元
- 项目类别:
大规模非确定图数据分析及其Multi-Accelerator并行系统架构研究
- 批准号:62002350
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
3D multi-parameters CEST联合DKI对椎间盘退变机制中微环境微结构改变的定量研究
- 批准号:82001782
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
高速Multi-bit/cycle SAR ADC性能优化理论研究
- 批准号:62004023
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于multi-SNP标记及不拆分策略的复杂混合样本身份溯源研究
- 批准号:
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
大地电磁强噪音压制的Multi-RRMC技术及其在青藏高原东南缘—印支块体地壳流追踪中的应用
- 批准号:
- 批准年份:2020
- 资助金额:万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
Structure-Focused Multi-task Learning Approach for structural pattern recognition and analysis
用于结构模式识别和分析的以结构为中心的多任务学习方法
- 批准号:
24K20789 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Integrating Large Language Models for Long Horizon Task Planning in Multi-robot Scenarios
集成大型语言模型以实现多机器人场景中的长期任务规划
- 批准号:
24K07399 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Human Factors and Task Scheduling for Multi-Human Multi-Robot Collaborative Manufacturing in Industry 5.0 Contexts
职业:工业 5.0 背景下多人多机器人协同制造的人为因素和任务调度
- 批准号:
2338767 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CRII: CNS: A Systematic Multi-Task Learning Framework for Improving Deep Learning Efficiency on Edge Platforms
CRII:CNS:用于提高边缘平台深度学习效率的系统多任务学习框架
- 批准号:
2245765 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Investigating facilitator-driven, multi-level implementation strategies in Federally Qualified Health Centers to improve provider recommendation and HPV vaccination rates among Latino/a adolescents
调查联邦合格健康中心中促进者驱动的多层次实施策略,以提高拉丁裔/非裔青少年的医疗服务提供者推荐和 HPV 疫苗接种率
- 批准号:
10737168 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Cognitively engaging walking exercise and neuromodulation to enhance brain function in older adults
认知性步行锻炼和神经调节可增强老年人的大脑功能
- 批准号:
10635832 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Role of coordinated multi-area reactivations during transitions between automatic and flexible behaviors.
在自动行为和灵活行为之间转换期间协调的多区域重新激活的作用。
- 批准号:
10721280 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Monitoring Community Efforts to Increase Colorectal Cancer Screening in African Americans
监测社区为增加非裔美国人结直肠癌筛查所做的努力
- 批准号:
10627341 - 财政年份:2023
- 资助金额:
-- - 项目类别: