Reflectivity ferromagnetic resonance (RFMR) for layer-resolved dynamic study of multi-layered systems

用于多层系统层分辨动态研究的反射率铁磁共振 (RFMR)

基本信息

  • 批准号:
    2606404
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Project description:Magnetic multilayer systems are a prime example of tailored materials in which their functionalities can be precisely controlled through advanced interface and layer engineering. This tuneability has led to their use across a wide range of topical fields, including skyrmions in chiral magnetic materials, synthetic antiferromagnets, and spintronic devices. Magnetic multilayers offer diverse opportunities for the development of ultrafast functional devices, however, an efficient method for determining the dynamic properties as a function of depth throughout such stacks has so far remained elusive. Very recently, we presented a new technique, reflectometry ferromagnetic resonance (RFMR), which provides an avenue to fully explore the magnetization dynamics in magnetic multilayer systems.The RFMR technique builds on our extensive and well recognized work of using x-ray magnetic circular dichroism (XMCD) and x-ray detected ferromagnetic resonance (XFMR) to explore the element-specific magnetization dynamics in magnetic material systems. In this project, in combination with soft x-ray resonant reflectivity, we extend these techniques to gain access to the magnetization dynamics as a function of depth. For the first time, this allows for the selective probing of the magnetization dynamics in the 'hidden' layers, inaccessible to other ferromagnetic resonance methods.The Project aims at fully establishing the RFMR technique at Diamond, making optimal use of the facilities at Diamond, its unique technical opportunities and beamline support, as well as the RF and spectroscopy expertise. In preparation for the project, and to demonstrate the large potential of RFMR in general, we measured the depth-dependence of the magnetization dynamics in a [CoFeB/MgO/Ta]4 multilayer, which is 'invisible' to other techniques, exposing novel dynamic behaviour. In a first step, the student will grow and explore synthetic antiferromagnets, aiming at the unravelling of the magnetic skyrmion dynamics.This project is a joint project with the Diamond Light Source, and in particular with the group of Prof Gerrit van der Laan.This project aligns with EPSRC's research areas "Condensed Matter: Magnetism and Magnetic Materials" and "Spintronics".
项目描述:磁性多层系统是量身定制材料的一个典型示例,其中可以通过高级界面和层工程来精确控制其功能。这种可调性导致了它们在各种局部磁场中的使用,包括手性磁性材料的天空,合成反铁磁铁和旋转器设备。磁性多层为开发超快功能设备提供了不同的机会,但是,确定动态特性作为整个此类堆栈的深度函数的有效方法仍然难以捉摸。 Very recently, we presented a new technique, reflectometry ferromagnetic resonance (RFMR), which provides an avenue to fully explore the magnetization dynamics in magnetic multilayer systems.The RFMR technique builds on our extensive and well recognized work of using x-ray magnetic circular dichroism (XMCD) and x-ray detected ferromagnetic resonance (XFMR) to explore the element-specific磁性材料系统中的磁化动力学。在这个项目中,结合软X射线谐振反射率,我们扩展了这些技术,以访问磁化动力学作为深度的函数。这是第一次可以选择性地探究“隐藏”层中的磁化动态,而其他铁磁共振方法无法接近。该项目旨在在钻石上充分建立钻石的RFMR技术,从而在钻石上进行最佳使用,在Diamond,其独特的技术机会和光束线支持,以及RF和Spectrscoppopy Persemase。为了准备该项目,并证明了RFMR的巨大潜力,我们测量了[COFEB/MGO/TA] 4多层磁化动力学的深度依赖性,这对其他技术是“看不见的”,从而暴露了新型动力学行为。第一步,学生将成长和探索合成的抗fiferromagnets,旨在揭开磁性Skyrmion动力学。该项目是一个与Diamond Light Source的联合项目,尤其是Gerrit van der Laan的组合。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Tetraspanins predict the prognosis and characterize the tumor immune microenvironment of glioblastoma.
  • DOI:
    10.1038/s41598-023-40425-w
  • 发表时间:
    2023-08-16
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
  • 通讯作者:
Axotomy induces axonogenesis in hippocampal neurons through STAT3.
  • DOI:
    10.1038/cddis.2011.59
  • 发表时间:
    2011-06-23
  • 期刊:
  • 影响因子:
    9
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

柔性接地配电网故障复合消弧与铁磁谐振主动抑制研究
  • 批准号:
    52077010
  • 批准年份:
    2020
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
地铁电网铁磁谐振特性分析与预测及电网脆弱性、故障蔓延模型研究
  • 批准号:
    51407012
  • 批准年份:
    2014
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
磁性多层膜中微波阻尼调制及对自旋泵浦效应影响研究
  • 批准号:
    61471096
  • 批准年份:
    2014
  • 资助金额:
    88.0 万元
  • 项目类别:
    面上项目
电场磁场可调频宽带微波谐振滤波器的基础研究
  • 批准号:
    61271072
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
磁性薄膜和磁性纳米结构中的自旋动力学研究
  • 批准号:
    11174131
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

ECCS-EPSRC. Acoustically Induced Ferromagnetic Resonance (FMR) Assisted Energy Efficient Spin Torque Memory Devices
ECCS-EPSRC。
  • 批准号:
    EP/X036715/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
ECCS-EPSRC: Collaborative Research: Acoustically induced Ferromagnetic Resonance (FMR) assisted Energy Efficient Spin Torque memory devices
ECCS-EPSRC:合作研究:声感应铁磁谐振 (FMR) 辅助节能自旋转矩存储器件
  • 批准号:
    2152528
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Detection of ferromagnetic resonance and control of magnetization by spin-resolved scanning tunneling microscopy
自旋分辨扫描隧道显微镜检测铁磁共振和磁化控制
  • 批准号:
    22K14598
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Pure Spin Currents detected by Broadband Ferromagnetic Resonance
宽带铁磁共振检测到的纯自旋电流
  • 批准号:
    573716-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
ECCS-EPSRC: Collaborative Research: Acoustically induced Ferromagnetic Resonance (FMR) assisted Energy Efficient Spin Torque memory devices
ECCS-EPSRC:合作研究:声感应铁磁谐振 (FMR) 辅助节能自旋转矩存储器件
  • 批准号:
    2152601
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了