Automorphic forms: arithmetic and analytic interfaces
自守形式:算术和分析接口
基本信息
- 批准号:2612135
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to better understand the properties of automorphic forms of higher rank, especially in situations involving high ramification. Automorphic forms are central objects in the Langlands program, a vast web of theorems and conjectures that connects concepts coming from number theory, representation theory and geometry. The simplest examples of automorphic forms include Dirichlet characters and classical modular forms, both of which have proved to be of profound importance in modern mathematics. More generally, automorphic forms are complex valued functions that can be naturally viewed as vectors inside representations known as automorphic representations. This viewpoint allows one to associate automorphic forms to any reductive algebraic group. From a different point of view, automorphic forms include (as special cases) eigenfunctions of Laplacians on arithmetic manifolds. This viewpoint allows one to bring in a whole range of additional perspectives coming from analysis, spectral theory and quantum mechanics. Automorphic forms and the L functions attached to them have been key ingredients in the solutions of many famous and difficult problems, such as Wiles' proof of Fermat's last Theorem and Duke's work on the representations of algebraic integers by ternary quadratic forms.A central theme in modern number theory is to understand key properties of automorphic forms and their associated L functions as one or more of their defining parameters vary. The finite or non archimedean part of these parameters can be captured by a fundamental arithmetic quantity called the conductor or level (henceforth denoted by N) that measures its total ramification (or complexity at finite primes). The level appears in the functionalequation of the attached L function, as well as (essentially) describes the arithmetic manifold that the automorphic form lives on. Compared to the archimedean aspect, there has been relatively little progress in the level aspect versions of analytic problems about automorphic forms, especially in higher rank. In this project, the student will investigate key questions related to the themes described above. The tools used will be a mix of algebraic as well as analytic number theory, together with representation theory of p adic groups. The specific problems to be solved will depend on the interests of the student (possible examples include sup norms and other L^p norms,period formulas, etc.)
这个项目的目标是更好地理解高阶自守形式的性质,特别是在涉及高分支的情况下。自守形式是朗兰兹纲领的中心对象,朗兰兹纲领是一个庞大的定理和定理网络,连接了来自数论、表示论和几何学的概念。自守形式的最简单的例子包括狄利克雷特征标和经典模形式,这两种形式在现代数学中都被证明是非常重要的。更一般地,自守形式是复值函数,可以自然地被视为称为自守表示的表示中的向量。这种观点允许人们将自守形式与任何还原代数群联系起来。从不同的观点来看,自守形式包括(作为特殊情况)算术流形上拉普拉斯算子的本征函数。这种观点允许人们从分析、光谱理论和量子力学中引入一系列额外的观点。自守形式和与之相关的L函数是解决许多著名和困难问题的关键要素,例如怀尔斯对费马大定理的证明和杜克关于代数整数的三元二次形式表示的工作。现代数论的一个中心主题是理解自守形式及其相关L函数在一个或多个定义参数变化时的关键性质。这些参数的有限或非阿基米德部分可以通过一个基本的算术量来捕获,称为导体或水平(以下用N表示),用于测量其总分支(或有限素数的复杂性)。层次出现在附加L函数的泛函方程中,同时(本质上)描述了自守形式所处的算术流形,与阿基米德方面相比,关于自守形式的解析问题的层次方面的研究进展相对较少,特别是在高阶方面。在这个项目中,学生将调查与上述主题相关的关键问题。所使用的工具将是一个混合的代数以及解析数论,连同代表性理论的padic集团。要解决的具体问题将取决于学生的兴趣(可能的例子包括sup范数和其他L^p范数,周期公式等)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Langlands correspondences and the arithmetic of automorphic forms
朗兰兹对应和自守形式的算术
- 批准号:
2302208 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Shimura Varieties and Automorphic Forms with Arithmetic Applications
志村簇和自同构形式及其算术应用
- 批准号:
2101688 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Automorphic forms on higher rank groups: Fourier coefficients, L-functions, and arithmetic
高阶群上的自守形式:傅立叶系数、L 函数和算术
- 批准号:
EP/T028343/1 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Research Grant
Arithmetic study on automorphic forms of several variables
多变量自守形式的算术研究
- 批准号:
20K03547 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automorphic forms and arithmetic geometry
自守形式和算术几何
- 批准号:
1000228356-2012 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Canada Research Chairs
P-adic Aspects of L-Values, Congruences Between Automorphic Forms, and Arithmetic Applications
L 值的 P 进数方面、自守形式之间的同余以及算术应用
- 批准号:
2001527 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Automorphic forms and arithmetic geometry
自守形式和算术几何
- 批准号:
1000228356-2012 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Canada Research Chairs
Automorphic forms and arithmetic geometry
自守形式和算术几何
- 批准号:
1000228356-2012 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Canada Research Chairs
Automorphic forms and arithmetic geometry
自守形式和算术几何
- 批准号:
1000228356-2012 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Canada Research Chairs