Physics-Informed Reinforcement Learning for Tactile Manipulation
用于触觉操作的物理强化学习
基本信息
- 批准号:2614951
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Object manipulation in unstructured and unfamiliar environments is a powerful tool that can greatly increase the value of robotics. However, research effort in this area has been largely focused on using vision as input for control whilst little attention has been given to the application of touch. Tactile sensing is key for achieving human-level dexterity. Measurements such as contact compliance, contact location, shear, pressure, slip, and other important mechanical properties of contact, that would otherwise be inaccessible through vision, can be obtained even when objects are partially occluded. In my research, I hope to harness this power of touch to develop control frameworks to support robots' interaction with the real-world. To fully realise the value of autonomous manipulation, robots need to operate under a wide range of pervasive and unsystematic scenarios that it nor its designers have foreseen before, many of which can be impossible to model. This calls for advanced control frameworks with high versatility and generality that is also robust enough to deal with a range of unpredictable situations. Reinforcement learning (RL) is a popular learning algorithm that can allow robots to learn a complex controller through trial and error. Adopting such technique would simplify the controller design problem, avoiding the need to develop specialised controller for every scenario in our unstructured world and significantly reducing the research effort required to achieve human-level dexterity. However, reinforcement learning can be extremely fragile. The learning process can be very sensitive to certain design parameters and small deviations from expected behaviour can lead to catastrophic failures. It also suffers from high sample complexity which makes real-world learning unfeasible. These drawbacks have meant that much of the recent advances in reinforcement learning for robotics have involved experimenting in simulations before transferring to the real-world, creating many sim-to-real problems. Model-based reinforcement learning is a more recent approach that aims to tackle these shortcomings by first learning a representation of the transition dynamics before using it to derive the optimal controller. This has been shown to be more effective for robot control where high-capacity models such as neural networks or probabilistic models can be used to solve complex control problems with reduced number of interactions. This not only makes real-world learning possible, but the existence of a model can improve robustness amongst many other benefits. The application of model-based reinforcement learning to tactile robotics has very much been underexplored and I believe this combination could massively progress the capabilities of tactile manipulation. My research will aim to further this vision, with a focus on safe and efficient real-world learning and deployment. I hope to develop methodologies for synthesising controller that is; sample efficient in the online learning process to exhibit adaptive behaviour, robust in deployment to be able to deal with unpredictable situations, and also remain general in formulation such that it can be applied to a range of tactile manipulation tasks. A potential direction I hope to explore is to incorporate physics-priors to guide the learning process which can potentially mitigate the major efficiency issues associated with the trial-and-error nature of reinforcement learning. This research falls within the EPSRC artificial intelligence and robotics area.
在非结构化和陌生环境中进行对象操作是一个强大的工具,可以大大增加机器人技术的价值。然而,该领域的研究工作主要集中在使用视觉作为控制输入,而很少关注触摸的应用。触觉传感是实现人类敏捷程度的关键。即使物体被部分遮挡,也可以获得接触顺应性、接触位置、剪切力、压力、滑移和其他重要的接触机械性能等测量结果,而这些测量结果是通过视觉无法获得的。在我的研究中,我希望利用触摸的力量来开发控制框架来支持机器人与现实世界的交互。为了充分实现自主操纵的价值,机器人需要在其及其设计者之前预见到的各种普遍且非系统的场景下进行操作,其中许多场景是无法建模的。这就需要具有高度通用性和通用性的先进控制框架,并且足够强大,可以处理一系列不可预测的情况。强化学习(RL)是一种流行的学习算法,可以让机器人通过反复试验来学习复杂的控制器。采用这种技术将简化控制器设计问题,避免为非结构化世界中的每种场景开发专门的控制器,并显着减少实现人类水平的灵活性所需的研究工作。然而,强化学习可能极其脆弱。学习过程可能对某些设计参数非常敏感,与预期行为的微小偏差可能会导致灾难性的失败。它还面临样本复杂性高的问题,这使得现实世界的学习变得不可行。这些缺点意味着机器人强化学习的最新进展大多涉及在转移到现实世界之前进行模拟实验,从而产生了许多模拟到现实的问题。基于模型的强化学习是一种较新的方法,旨在通过首先学习过渡动态的表示,然后使用它来导出最佳控制器来解决这些缺点。事实证明,这对于机器人控制更为有效,其中可以使用神经网络或概率模型等高容量模型来解决复杂的控制问题,同时减少交互次数。这不仅使现实世界的学习成为可能,而且模型的存在可以提高鲁棒性以及许多其他好处。基于模型的强化学习在触觉机器人中的应用尚未得到充分探索,我相信这种组合可以极大地提高触觉操纵的能力。我的研究旨在进一步推进这一愿景,重点关注安全高效的现实世界学习和部署。我希望开发综合控制器的方法,即:在线学习过程中的样本有效,以表现出适应性行为,部署稳健,能够处理不可预测的情况,并且在公式中保持通用性,使其可以应用于一系列触觉操作任务。我希望探索的一个潜在方向是结合物理先验来指导学习过程,这可能会减轻与强化学习的试错性质相关的主要效率问题。这项研究属于 EPSRC 人工智能和机器人领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Discovering early biomarkers of Alzheimer's disease using genetic and physics-informed networks
利用遗传和物理信息网络发现阿尔茨海默病的早期生物标志物
- 批准号:
2904538 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Studentship
PIDD-MSK: Physics-Informed Data-Driven Musculoskeletal Modelling
PIDD-MSK:物理信息数据驱动的肌肉骨骼建模
- 批准号:
EP/Y027930/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Informed Testing — From Full-Field Characterization of Mechanically Graded Soft Materials to Student Equity in the Classroom
职业:知情测试 – 从机械分级软材料的全场表征到课堂上的学生公平
- 批准号:
2338371 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Embedding Material-Informed History through Fractional Calculus State Variable Formulation
合作研究:通过分数阶微积分状态变量公式嵌入材料丰富的历史
- 批准号:
2345437 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Rapid, Scalable, and Joint Assessment of Seismic Multi-Hazards and Impacts: From Satellite Images to Causality-Informed Deep Bayesian Networks
地震多重灾害和影响的快速、可扩展和联合评估:从卫星图像到因果关系深度贝叶斯网络
- 批准号:
2242590 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
MEtaGenome-informed Antimicrobial resistance Surveillance: Harnessing long-read sequencing for an analytical, indicator and risk assessment framework
基于 MEtaGenome 的抗菌药物耐药性监测:利用长读长测序构建分析、指标和风险评估框架
- 批准号:
MR/Y034457/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: Physics-Informed Deep Learning for Understanding Earthquake Slip Complexity
职业:基于物理的深度学习用于理解地震滑动的复杂性
- 批准号:
2339996 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Advanced and Uncertainty-Informed Site Investigation
职业:高级和不确定性现场调查
- 批准号:
2340596 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Embedding Material-Informed History through Fractional Calculus State Variable Formulation
合作研究:通过分数阶微积分状态变量公式嵌入材料丰富的历史
- 批准号:
2345438 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




