Breaking the curse of dimensionality in low-data tasks
打破低数据任务中的维度诅咒
基本信息
- 批准号:2615996
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research seeks to create data-efficient machine learning algorithms that can learn in complex domains with low-data and high dimensionality. Specifically, the research will focus on tasks with - 100s samples and 1000 - 20; 000 features, such as diagnosing patients from clinical trials where sequencing data is available. Learning from little data usually requires creating machine learning models that incorporate adequate invariances and inductive biases. The Bayesian machine learning framework allows inputting domain knowledge through specifying prior distributions and kernel functions. However, specifying kernels for complex domains remains challenging, and it is common practice to use uninformative priors and rely almost entirely on learning from the data.This research aims to circumvent the apparent limitations of learning from low-data by designing methods to learn priors that capture the rich interactions between features, and to incorporate human knowledge. It will investigate ways to learn kernel functions for Bayesian models. Using data-driven kernel could enable integrating learned information about the complex feature interactions (e.g., gene interactions in particular diseases) and facilitate reliable predicting from small datasets. The first research direction is learning rich kernel functions for semi-parametric models via the framework of deep kernel learning in the context of Gaussian Processes. A second research direction will investigate transfer learning for the 'kernel function' stored in the parameters of the recently introduced neural processes.Potential impact: This research has the potential to enable reliable estimation from small, high-dimensional datasets from various domains such as Medicine, drug discovery and beyond. Ultimately, the proposed advancements could capture rich interaction between variables and transfer this knowledge to similar scenarios in which relying on data alone is insufficient. I hope the proposed approach will become standard practice in enabling fast learning, similar to the transfer learning framework in domains such as computer vision or natural language processing.
这项研究旨在创建数据高效的机器学习算法,可以在低数据和高维的复杂领域中学习。具体来说,该研究将专注于具有约100个样本和1000 - 20; 000个特征的任务,例如从测序数据可用的临床试验中诊断患者。从少量数据中学习通常需要创建包含足够的不变性和归纳偏差的机器学习模型。贝叶斯机器学习框架允许通过指定先验分布和核函数来输入领域知识。然而,为复杂域指定核仍然具有挑战性,并且通常的做法是使用无信息的先验知识,并且几乎完全依赖于从数据中学习,本研究旨在通过设计方法来学习捕获特征之间丰富的相互作用的先验知识,并结合人类知识,从而规避从低数据中学习的明显局限性。它将研究学习贝叶斯模型的核函数的方法。使用数据驱动的内核可以集成关于复杂特征交互的学习信息(例如,特定疾病中的基因相互作用),并有助于从小数据集进行可靠的预测。第一个研究方向是在高斯过程的背景下,通过深度核学习框架学习半参数模型的丰富核函数。第二个研究方向将研究最近引入的神经过程参数中存储的“核函数”的迁移学习。潜在影响:这项研究有可能从医学,药物发现等各个领域的小型高维数据集进行可靠的估计。最终,拟议的进步可以捕捉变量之间的丰富互动,并将这些知识转移到仅依靠数据是不够的类似场景中。我希望所提出的方法将成为实现快速学习的标准实践,类似于计算机视觉或自然语言处理等领域的迁移学习框架。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
CAREER: Navigating the Curse of Dimensionality in Euclidean Optimization Problems
职业:解决欧几里得优化问题中的维数灾难
- 批准号:
2337993 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Making Use of the Curse of Dimensionality in Modern Data Analysis
在现代数据分析中利用维度诅咒
- 批准号:
2311399 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Taking On the "Curse of Dimensionality" in Chemical Kinetics: Complex Chemical Reaction Prediction Using Manifold Learning
应对化学动力学中的“维数诅咒”:利用流形学习预测复杂化学反应
- 批准号:
2227112 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Overcoming the curse of dimensionality in dynamic programming by tensor decompositions
通过张量分解克服动态规划中的维数灾难
- 批准号:
EP/V04771X/1 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grant
A Stationarity-Based Operator, Associated Fundamental Solutions and a Curse-of-Dimensionality-Free Algorithm
基于平稳性的算子、相关基本解和无维数灾难算法
- 批准号:
1908918 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Analysis of Stochastic Neuronal Models Using Eigenvalue Numerical Solution Methods that Overcome the Curse of Dimensionality
使用特征值数值求解方法分析随机神经元模型,克服维数灾难
- 批准号:
18K11518 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
BIGDATA: F: Testing High Dimensional Distributions without the Curse of Dimensionality
BIGDATA:F:在没有维数灾难的情况下测试高维分布
- 批准号:
1741137 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
Automatic Recognition of Human Activities in Surveillance Videos: Overcoming the Curse of Dimensionality
自动识别监控视频中的人类活动:克服维度诅咒
- 批准号:
DP0987387 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Discovery Projects
Lifting the curse of dimensionality - bringing together the quasi Monte Carlo and sparse grid methods
解除维数诅咒 - 将准蒙特卡罗和稀疏网格方法结合在一起
- 批准号:
LX0881924 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Linkage - International
Idempotent Analysis and Curse-of-Dimensionality-Free Methods in Nonlinear Control
非线性控制中的幂等分析和无维数灾难方法
- 批准号:
0808131 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant