Making Use of the Curse of Dimensionality in Modern Data Analysis

在现代数据分析中利用维度诅咒

基本信息

  • 批准号:
    2311399
  • 负责人:
  • 金额:
    $ 27.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

This research project delves into cutting-edge data analysis, frequently dealing with high-dimensional or non-Euclidean data, such as sensor readings, genomic information, imagery, and network datasets. Such data is commonly encountered across diverse disciplines, including biology, social science, computer science, and astronomy. A major challenge in analyzing this data is the curse of dimensionality, which causes traditional tools to degrade rapidly as the number of dimensions or features grows. While previous attempts have focused on reducing the dimensionality of the data or through regularization techniques, these methods often exhibit limitations. In contrast, this project adopts an innovative strategy by harnessing the patterns that emerge as a result of the curse of dimensionality to bolster data analysis. The project aims to provide valuable tools for data analysis and explore the role of statistics in the era of big data. The tools developed within this project will be made available as open-source software packages with thorough documentation, enhancing collaboration between the statistics community and researchers from various scientific fields and making data analysis procedures more transparent. The project also includes training and educational components for undergraduate and graduate students, equipping them with interdisciplinary data analysis skills that will be invaluable for the next generation of researchers.This project seeks to develop innovative methodologies and foundational theories for crucial data analysis tasks involving high-dimensional and non-Euclidean data. Specifically, the project will create a pioneering high-dimensional classification framework that leverages interpoint distance ranks and takes into account the curse of dimensionality, resulting in significantly reduced misclassification rates compared to existing methods across various settings. Moreover, the project will establish a unified community detection framework capable of identifying all three community structures -- assortative, disassortative, and core-periphery – without prior knowledge of which community structure the network is. By linking these distinct structures to high-dimensional data behaviors, where the core-periphery structure naturally emerges due to the curse of dimensionality, the unified framework exhibits superior performance in numerical studies on simulated and real datasets across all three mixing patterns, whereas existing methods struggle in at least one of these patterns. Lastly, the project will develop an innovative high-dimensional clustering framework that employs the patterns of curse of dimensionality to reduce misclustering rates. These methodological and theoretical advancements will enhance the understanding of modern, complex data from diverse fields, promoting the comprehension of significant scientific issues in these areas.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目深入研究前沿数据分析,经常处理高维或非欧几里得数据,如传感器读数、基因组信息、图像和网络数据集。这样的数据在不同的学科中都很常见,包括生物学、社会科学、计算机科学和天文学。分析这些数据的一个主要挑战是维度诅咒,它导致传统工具随着维度或特征的数量增长而迅速降级。虽然以前的尝试侧重于降低数据的维度或通过正则化技术,但这些方法往往显示出局限性。相比之下,这个项目采用了一种创新的战略,利用因维度诅咒而出现的模式来支持数据分析。该项目旨在为数据分析提供有价值的工具,并探索统计在大数据时代的作用。在该项目内开发的工具将以开放源码软件包的形式提供,并提供详尽的文件,从而加强统计界与不同科学领域的研究人员之间的合作,并使数据分析程序更加透明。该项目还包括本科生和研究生的培训和教育部分,使他们掌握跨学科的数据分析技能,这对下一代研究人员将是无价的。该项目寻求为涉及高维和非欧几里德数据的关键数据分析任务开发创新的方法和基础理论。具体地说,该项目将创建一个开创性的高维分类框架,该框架利用点间距离等级并考虑到维度诅咒,与各种环境下的现有方法相比,大大降低了错误分类率。此外,该项目将建立一个统一的社区检测框架,能够在事先不知道网络是哪种社区结构的情况下识别所有三种社区结构--分类、非分类和核心-边缘。通过将这些不同的结构与高维数据行为联系起来,其中核心-外围结构由于维度诅咒而自然出现,统一框架在对所有三种混合模式的模拟和真实数据集的数值研究中显示出优越的性能,而现有方法至少在这些模式中的一种模式中挣扎。最后,该项目将开发一个创新的高维集群框架,采用维度灾难的模式来减少错群率。这些方法和理论的进步将加强对来自不同领域的现代、复杂数据的理解,促进对这些领域重大科学问题的理解。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hao Chen其他文献

A multi-objective optimization approach for the selection of overseas oil projects
海外石油项目选择的多目标优化方法
  • DOI:
    10.1016/j.cie.2020.106977
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Hao Chen;Li Xi-Yu;Lu Xin-Ru;Sheng Ni;Zhou Wei;Geng Hao-Peng;Yu Shiwei
  • 通讯作者:
    Yu Shiwei
Aerosol optical depth and fine-mode fraction retrieval over East Asia using multi-angular total and polarized remote sensing
利用多角度全偏振遥感反演东亚气溶胶光学深度和精细模式分数
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Tianhai Cheng;Xingfa Gu;Donghai Xie;Zhengqiang Li;Tao Yu;Hao Chen
  • 通讯作者:
    Hao Chen
Quantification of control rod worth uncertainties propagated from nuclear data via a hybrid high-order perturbation and efficient sampling method
通过混合高阶扰动和高效采样方法对从核数据传播的控制棒价值不确定性进行量化
  • DOI:
    10.1016/j.anucene.2017.12.049
  • 发表时间:
    2018-04
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Hao Chen;Li Fu;Hu Wenqi;Zhang Yunfei;Zhao Qiang
  • 通讯作者:
    Zhao Qiang
Freeform manufacturing of a progressive addition lens by use of a voice coil fast tool servo
使用音圈快速工具伺服系统自由曲面制造渐进多焦点镜片
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yi Yu Li;Jiaojie Chen;H. Feng;Chaohong Li;Jia Qu;Hao Chen
  • 通讯作者:
    Hao Chen
Image Classification Model Based on Deep Learning in Internet of Things
物联网中基于深度学习的图像分类模型

Hao Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hao Chen', 18)}}的其他基金

ERI: Representations of Complex Engineering Systems via Technology Recursion and Renormalization Group
ERI:通过技术递归和重整化群表示复杂工程系统
  • 批准号:
    2301627
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Development of Absolute Quantitative Protein Footprinting Mass Spectrometry (aqPFMS) for Probing Protein 3D Structures
开发用于探测蛋白质 3D 结构的绝对定量蛋白质足迹质谱 (aqPFMS)
  • 批准号:
    2203284
  • 财政年份:
    2022
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Collaborative: Understanding and Detecting Memory Bugs in Rust
SaTC:核心:小:协作:理解和检测 Rust 中的内存错误
  • 批准号:
    1956364
  • 财政年份:
    2020
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
CAREER: New Change-Point Problems in Analyzing High-Dimensional and Non-Euclidean Data
职业:分析高维和非欧几里得数据的新变点问题
  • 批准号:
    1848579
  • 财政年份:
    2019
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Medium: Collaborative: Towards Robust Machine Learning Systems
SaTC:核心:媒介:协作:迈向稳健的机器学习系统
  • 批准号:
    1801751
  • 财政年份:
    2018
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Development of Electrochemical Mass Spectrometry for the Study of Protein Redox Chemistry and Protein Structures
用于研究蛋白质氧化还原化学和蛋白质结构的电化学质谱法的发展
  • 批准号:
    1915878
  • 财政年份:
    2018
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
Development of Electrochemical Mass Spectrometry for the Study of Protein Redox Chemistry and Protein Structures
用于研究蛋白质氧化还原化学和蛋白质结构的电化学质谱法的发展
  • 批准号:
    1709075
  • 财政年份:
    2017
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
Change-Point Analysis for Multivariate and Object Data
多变量和对象数据的变点分析
  • 批准号:
    1513653
  • 财政年份:
    2015
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
CAREER: Development of Microsecond Time-Resolved Mass Spectrometry for the Study of Biochemical Reaction Mechanisms and Kinetics
职业:开发微秒时间分辨质谱用于生化反应机制和动力学研究
  • 批准号:
    1149367
  • 财政年份:
    2012
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
TC: Small: Designing New Authentication Mechanisms using Hardware Capabilities in Advanced Mobile Devices
TC:小型:使用高级移动设备中的硬件功能设计新的身份验证机制
  • 批准号:
    1018964
  • 财政年份:
    2010
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant

相似海外基金

How can we make use of one or more computationally powerful virtual robots, to create a hive mind network to better coordinate multi-robot teams?
我们如何利用一个或多个计算能力强大的虚拟机器人来创建蜂巢思维网络,以更好地协调多机器人团队?
  • 批准号:
    2594635
  • 财政年份:
    2025
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Studentship
Validating FilaChar Use in Wastewater Treatment
验证 FilaChar 在废水处理中的使用
  • 批准号:
    10106623
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Launchpad
Museum Visitor Experience and the Responsible Use of AI to Communicate Colonial Collections
博物馆参观者体验和负责任地使用人工智能来交流殖民地收藏品
  • 批准号:
    AH/Z505547/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Research Grant
Examining the Effect of Childhood Individual and Contextual Risk Factors on Violence Use and Experience at Early Adulthood (18-21 years)
检查童年个体和背景风险因素对成年早期(18-21 岁)暴力使用和经历的影响
  • 批准号:
    2901103
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Studentship
Governing Sustainable Futures: Advancing the use of Participatory Mechanisms for addressing Place-based Contestations of Sustainable Living
治理可持续未来:推进利用参与机制来解决基于地方的可持续生活竞赛
  • 批准号:
    ES/Z502789/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Research Grant
ICF: Use of Unmanned Aerial vehicles (Medical Drones) to Support Differentiated Service Delivery Models for Elimination of HIV in Uganda
ICF:使用无人机(医疗无人机)支持乌干达消除艾滋病毒的差异化服务提供模式
  • 批准号:
    MR/Y019717/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Research Grant
The Use of Geothermal Energy for the Decarbonisation of Heat in Greater Manchester
利用地热能实现大曼彻斯特热量脱碳
  • 批准号:
    NE/Y004973/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Research Grant
Postdoctoral Fellowship: STEMEdIPRF: Resource Use as a Mediator of Sociodemographic Disparities in Student Success
博士后奖学金:STEMEdIPRF:资源利用作为学生成功中社会人口差异的中介
  • 批准号:
    2327314
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
  • 批准号:
    2327435
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
  • 批准号:
    2344109
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了