Wake Properties Prediction by means of machine learning algorithms
通过机器学习算法进行尾流特性预测
基本信息
- 批准号:2620014
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Wind power has become the most successful renewable energy and represents the second-largest power generation capacity (175 GW) in Europe after natural gas. At the end of 2019, there was an installed accumulative wind power capacity in the UK of 23,513 MW of wind power, generating more than 50 TWh of energy.Wake steering is a control strategy that can increase wind farm performance. There are multiple recent and ongoing studies, showing that yawing upwind turbines can deliver more power for the downwind turbines due to reduction of wake deficits. Similar effect can potentially be achieved using derating of upwind turbines, or by a combination of yaw control and derating. In order to robustly apply wake steering or wind turbine derating, it is necessary to know whether the turbine is actually experiencing any detrimental wake effects and the relative location of the wake disturbance so that appropriate control action can be carried out.There are multiple examples of how wake characteristics have been identified using nacelle-mounted lidars and other remote sensing technologies. The results are promising however they require additional devices (lidars) which increase cost and complexity if it were to be installed on each turbine. Further issues are relatively low data availability and the requirements for data processing. Furthermore it would be preferable for prediction can be carried out with standard sensor setups. Wind inflow conditions such as wind shear and yaw misalignment have been successfully characterized with turbine-mounted sensors, e.g. strain gages, supplemented with accelerometer data and SCADA signals such as rpm and power. Since the wind profiles caused by wake deficits represent somewhat similar phenomena to wind shear and other variations of wind speed and turbulence over the rotor, it is expected that wake effects will cause similar variations in the load harmonics.Machine learning has been successfully applied for various modelling and detection purposes in wind turbines, with the greatest focus by far being power output prediction and detection of faults. For wake properties prediction, the problem is similar to fault detection since patterns in the signal need to be identified and evaluated as to whether or not they are consistent with normal behavior. Machine Learning is, thus, expected to be the best approach for achieving automated wake properties prediction based on load signals.The main goal of the project is to devise a method for wind turbine wake properties prediction based on the use of measurement signals from the turbine affected by the wake. The wake properties prediction capability will enable controlling individual wind turbines to maximize wind farm performance. This is achieved through the following specific objectives:- Devise a Machine Learning-based wake properties prediction algorithm using numerical simulations of wake conditions and wind turbine dynamics- Analyze feature importance so that relevant inputs are understood and included; additionally dimensionality may be reduced based on individual input contribution to a more accurate prediction. Furthermore understand which inputs are available across turbine fleet, and reflect on these configuration and evaluate in relation to considered models.Carry out field validation of the prediction method by comparison with other prediction capabilities such as nacelle-mounted lidars- Suggest a control scheme to utilize the wake properties prediction information for improving wind farm performance
风力发电已成为最成功的可再生能源,在欧洲仅次于天然气的第二大发电能力(175吉瓦)。截至2019年底,英国累计风电装机容量为23513兆瓦,发电量超过50太瓦时。尾流转向是一种可以提高风电场性能的控制策略。最近和正在进行的多项研究表明,由于尾流赤字的减少,偏航逆风涡轮机可以为下风涡轮机提供更多的动力。使用逆风涡轮机的降额,或通过偏航控制和降额的组合,可以潜在地实现类似的效果。为了稳健性地应用尾流转向或风力机降额,有必要知道风力机是否实际经历任何有害的尾流效应以及尾流扰动的相对位置,以便进行适当的控制动作。使用安装在机舱内的激光雷达和其他遥感技术来识别尾流特性的例子有很多。结果是有希望的,但他们需要额外的设备(激光雷达),增加成本和复杂性,如果它被安装在每个涡轮机。进一步的问题是相对较低的数据可用性和对数据处理的要求。此外,使用标准传感器设置进行预测是可取的。通过安装在涡轮上的传感器(如应变片),辅以加速度计数据和SCADA信号(如转速和功率),可以成功地表征风切变和偏航失调等风流入条件。由于尾流缺陷引起的风廓线与风切变以及转子上的风速和湍流的其他变化有些相似,因此预计尾流效应将导致负载谐波的类似变化。机器学习已经成功地应用于风力涡轮机的各种建模和检测目的,到目前为止,最大的焦点是功率输出预测和故障检测。对于尾流特性预测,问题类似于故障检测,因为信号中的模式需要被识别和评估,以确定它们是否与正常行为一致。因此,机器学习有望成为基于负载信号实现自动尾流特性预测的最佳方法。本项目的主要目标是设计一种基于受尾流影响的风力机测量信号的风力机尾流特性预测方法。尾流特性预测能力将使控制单个风力涡轮机能够最大限度地提高风电场的性能。这是通过以下具体目标实现的:-设计一个基于机器学习的尾流特性预测算法,使用尾流条件和风力涡轮机动力学的数值模拟-分析特征的重要性,以便理解和包括相关的输入;此外,可以根据个人输入贡献减少维度,以获得更准确的预测。此外,了解涡轮机机群中可用的输入,并反映这些配置和评估与所考虑的模型有关。通过与其他预测能力(如安装在机舱内的激光雷达)进行比较,对预测方法进行现场验证-提出一种控制方案,利用尾流特性预测信息提高风电场性能
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
CAREER: Field-scale quantification of dynamic physical properties in shrink-swell soils for improved hydrological prediction
职业:对收缩膨胀土壤的动态物理特性进行现场规模量化,以改进水文预测
- 批准号:
2337711 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Measurements and prediction of transport properties of low GWP refrigerants and their mixture
低 GWP 制冷剂及其混合物传输特性的测量和预测
- 批准号:
23KF0155 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Wake Properties Prediction by means of machine learning algorithms
通过机器学习算法进行尾流特性预测
- 批准号:
2855649 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Developing nondestructive techniques for the inspection of internal check and the prediction of strength properties of wood beam without pith
开发无髓木梁内部检查和强度性能预测的无损技术
- 批准号:
22H02409 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Bridge Housing Solutions: An AI prediction engine (utilising NLP and contextual scoring) to match social housing properties and reduce the need for temporary accommodation
Bridge Housing Solutions:人工智能预测引擎(利用 NLP 和上下文评分)来匹配社会住房属性并减少临时住宿的需求
- 批准号:
10035267 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Collaborative R&D
CDS&E: First Principles Prediction of Thermal Radiative Properties of Dielectric Materials
CDS
- 批准号:
2102645 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
Development of dimensionless distribution theory with solute fundamental properties for prediction of subcritical fluid separation technique
发展具有溶质基本性质的无量纲分布理论,用于预测亚临界流体分离技术
- 批准号:
21H01685 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Capturing 4D Variations in Stress, Slip, and Fault-Zone Material Properties: The 2019-2021 Gofar Transform Fault Earthquake Prediction Experiment
合作研究:捕捉应力、滑移和断层带材料特性的 4D 变化:2019-2021 年 Gofar 变换断层地震预测实验
- 批准号:
2128784 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
Towards Ab Initio Prediction of Superconducting Properties
迈向超导特性的从头开始预测
- 批准号:
2035518 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
Understanding statistical properties of extreme phenomena based on the burst mechanism and its application to prediction
基于突发机制理解极端现象的统计特性及其在预测中的应用
- 批准号:
21K17825 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




